版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)滿足,則的共軛復數(shù)是()A. B. C. D.2.已知,則的值等于()A. B. C. D.3.已知復數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.4.已知函數(shù),將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.5.已知集合,,若,則()A. B. C. D.6.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.7.某校在高一年級進行了數(shù)學競賽(總分100分),下表為高一·一班40名同學的數(shù)學競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學生的數(shù)學競賽成績,運行相應的程序,輸出,的值,則()A.6 B.8 C.10 D.128.已知等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A. B. C. D.9.正項等比數(shù)列中的、是函數(shù)的極值點,則()A. B.1 C. D.210.已知函數(shù),其中,,其圖象關于直線對稱,對滿足的,,有,將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則函數(shù)的單調遞減區(qū)間是()A. B.C. D.11.函數(shù)的定義域為()A. B. C. D.12.若復數(shù),則()A. B. C. D.20二、填空題:本題共4小題,每小題5分,共20分。13.棱長為的正四面體與正三棱錐的底面重合,若由它們構成的多面體的頂點均在一球的球面上,則正三棱錐的內切球半徑為______.14.在的展開式中,的系數(shù)為______用數(shù)字作答15.在平面直角坐標系中,若雙曲線經過點(3,4),則該雙曲線的準線方程為_____.16.設常數(shù),如果的二項展開式中項的系數(shù)為-80,那么______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點.求證:平面平面;是否存在滿足的點,使得?若存在,求出的值;若不存在,請說明理由.18.(12分)已知函數(shù),且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.19.(12分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.20.(12分)設函數(shù)().(1)討論函數(shù)的單調性;(2)若關于x的方程有唯一的實數(shù)解,求a的取值范圍.21.(12分)等比數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.22.(10分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設函數(shù).當時,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據復數(shù)的除法運算法則和共軛復數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復數(shù)的除法的運算法則,考查了復數(shù)的共軛復數(shù)的定義,屬于基礎題.2、A【解析】
由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數(shù)中的誘導公式,屬于簡單題3、D【解析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎題.4、C【解析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域為,結合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項.【詳解】函數(shù),將函數(shù)的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域為.若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點的橫坐標,的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點睛】本題考查三角函數(shù)圖象變換,同時也考查了正弦型函數(shù)與周期相關的問題,解題的關鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.5、A【解析】
由,得,代入集合B即可得.【詳解】,,,即:,故選:A【點睛】本題考查了集合交集的含義,也考查了元素與集合的關系,屬于基礎題.6、B【解析】
根據定義域排除,求出的值,可以排除,考慮排除.【詳解】根據函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質分析,常見方法為排除法.7、D【解析】
根據程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎知識;考查運算求解能力,邏輯推理能力和數(shù)學應用意識.8、D【解析】
根據等差數(shù)列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數(shù)列的計算,意在考查學生的計算能力.9、B【解析】
根據可導函數(shù)在極值點處的導數(shù)值為,得出,再由等比數(shù)列的性質可得.【詳解】解:依題意、是函數(shù)的極值點,也就是的兩個根∴又是正項等比數(shù)列,所以∴.故選:B【點睛】本題主要考查了等比數(shù)列下標和性質以應用,屬于中檔題.10、B【解析】
根據已知得到函數(shù)兩個對稱軸的距離也即是半周期,由此求得的值,結合其對稱軸,求得的值,進而求得解析式.根據圖像變換的知識求得的解析式,再利用三角函數(shù)求單調區(qū)間的方法,求得的單調遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關于直線對稱,對滿足的,,有,∴.再根據其圖像關于直線對稱,可得,.∴,∴.將函數(shù)的圖像向左平移個單位長度得到函數(shù)的圖像.令,求得,則函數(shù)的單調遞減區(qū)間是,,故選B.【點睛】本小題主要考查三角函數(shù)圖像與性質求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調區(qū)間的求法,屬于中檔題.11、C【解析】
函數(shù)的定義域應滿足故選C.12、B【解析】
化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復數(shù)的運算,復數(shù)的模,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由棱長為的正四面體求出外接球的半徑,進而求出正三棱錐的高及側棱長,可得正三棱錐的三條側棱兩兩相互垂直,進而求出體積與表面積,設內切圓的半徑,由等體積,求出內切圓的半徑.【詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設三角形的外接圓的半徑為,則,解得,設外接球的半徑為,則可得,即,解得,設正三棱錐的高為,因為,所以,所以,而,所以正三棱錐的三條側棱兩兩相互垂直,所以,設內切球的半徑為,,即解得:.故答案為:.【點睛】本題考查多面體與球的內切和外接問題,考查轉化與化歸思想,考查空間想象能力、運算求解能力,求解時注意借助幾何體的直觀圖進行分析.14、1【解析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.15、【解析】
代入求解得,再求準線方程即可.【詳解】解:雙曲線經過點,,解得,即.又,故該雙曲線的準線方程為:.故答案為:.【點睛】本題主要考查了雙曲線的準線方程求解,屬于基礎題.16、【解析】
利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.∴,解得.故答案為:-2.【點睛】本小題主要考查根據二項式展開式的系數(shù)求參數(shù),屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、證明見解析;2.【解析】
利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,而,所以平面.又,所以平面.因為平面,所以平面平面.由,知.所以,,.因此,的充要條件是,所以,.即存在滿足的點,使得,此時.【點睛】本題主要考查平面與平面垂直的判定、三棱錐的體積等基礎知識;考查空間想象能力、運算求解能力、推理論證能力和創(chuàng)新意識;考查化歸與轉化、函數(shù)與方程等數(shù)學思想,屬于難題.18、(1);(2)【解析】
(1)由,可求出的值,進而可求得的解析式;(2)分別求得和的值域,再結合兩個函數(shù)的值域間的關系可求出的取值范圍.【詳解】(1)因為,所以,解得,故.(2)因為,所以,所以,則,圖象的對稱軸是.因為,所以,則,解得,故的取值范圍是.【點睛】本題考查了三角函數(shù)的恒等變換,考查了二次函數(shù)及三角函數(shù)值域的求法,考查了學生的計算求解能力,屬于中檔題.19、(1)(2)0【解析】
(1)根據題意,設直線,與聯(lián)立,得,再由弦長公式,求解.(2)設,根據直線的斜率為1,則,得到,再由,所以線段中點的縱坐標為,然后直線的方程與直線的方程聯(lián)立解得交點H的縱坐標,說明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設,則,解得,故拋物線的方程為.(2),因為直線的斜率為1,則,所以,因為,所以線段中點的縱坐標為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點的縱坐標為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結論也顯然成立,綜上所述,直線的斜率為0.【點睛】本題考查拋物線的方程、直線與拋物線的位置關系,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.20、(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數(shù)只有一個實數(shù)解,根據(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調遞增,且,函數(shù)只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數(shù)只有一個零點,原方程只有一個解,當且遞增區(qū)間時,遞減區(qū)間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導數(shù)的綜合應用,涉及到單調性、零點、極值最值,考查分類討論和等價轉化思想,屬于中檔題.21、(Ⅰ)或(Ⅱ)12【解析】
(1)先設數(shù)列的公比為,根據題中條件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年健康管理師考試題集及解析
- 2026年建筑工程基礎知識試題集及答案
- 2026年媒體與傳播專業(yè)知識題集
- 安全對聯(lián)創(chuàng)意展示講解
- 2026年黑龍江生物科技職業(yè)學院單招綜合素質考試備考題庫含詳細答案解析
- 2026年安慶醫(yī)藥高等??茖W校高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年江海職業(yè)技術學院單招職業(yè)技能考試模擬試題含詳細答案解析
- 2026年湖南電氣職業(yè)技術學院單招綜合素質筆試備考試題含詳細答案解析
- 2026年河南農業(yè)職業(yè)學院單招綜合素質考試備考試題含詳細答案解析
- 2026年鐘山職業(yè)技術學院單招職業(yè)技能考試備考題庫含詳細答案解析
- 山東省濟南市2025-2026年高三上第一次模擬考試生物+答案
- 2026年廣州中考政治真題變式訓練試卷(附答案可下載)
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫及參考答案詳解1套
- 2025-2026學年天津市河東區(qū)八年級(上)期末英語試卷
- 2025年初中初一語文基礎練習
- 2026年中央網信辦直屬事業(yè)單位-國家計算機網絡應急技術處理協(xié)調中心校園招聘備考題庫參考答案詳解
- 老友記電影第十季中英文對照劇本翻譯臺詞
- 2025年黑龍江省大慶市檢察官逐級遴選筆試題目及答案
- 國保秘密力量工作課件
- 2025年銀行柜員年終工作總結(6篇)
- 電力工程質量保修承諾書(5篇)
評論
0/150
提交評論