版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或42.已知兩點都在反比例函數圖象上,當時,,則的取值范圍是()A. B. C. D.3.對于實數x,我們規(guī)定[x]表示不大于x的最大整數,如[4]=4,[]=1,[﹣2.5]=﹣3.現對82進行如下操作:82[]=9[]=3[]=1,這樣對82只需進行3次操作后變?yōu)?,類似地,對121只需進行多少次操作后變?yōu)?()A.1 B.2 C.3 D.44.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.下列說法中,錯誤的是()A.兩個全等三角形一定是相似形B.兩個等腰三角形一定相似C.兩個等邊三角形一定相似D.兩個等腰直角三角形一定相似6.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數為()A. B. C. D.7.如圖,△ABC是等邊三角形,點P是三角形內的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.38.如圖,函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)9.一枚質地均勻的骰子,骰子的六個面上分別刻有1到6的點數,投擲這樣的骰子一次,向上一面點數是偶數的結果有()A.1種 B.2種 C.3種 D.6種10.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.正五邊形B.平行四邊形C.矩形D.等邊三角形11.如圖,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半徑為3,那么下列說法正確的是()A.點B、點C都在⊙A內 B.點C在⊙A內,點B在⊙A外C.點B在⊙A內,點C在⊙A外 D.點B、點C都在⊙A外12.下面四個幾何體中,左視圖是四邊形的幾何體共有()A.1個 B.2個 C.3個 D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果2,那么=_____(用向量,表示向量).14.有一個計算程序,每次運算都是把一個數先乘2,再除以它與1的和,多次重復進行這種運算的過程如下:則第n次的運算結果是____________(用含字母x和n的代數式表示).15.不等式≥-1的正整數解為________________.16.對于任意不相等的兩個實數,定義運算※如下:※=,如3※2==.那么8※4=.17.某校準備從甲、乙、丙、丁四個科創(chuàng)小組中選出一組,參加區(qū)青少年科技創(chuàng)新大賽,表格反映的是各組平時成績的平均數(單位:分)及方差S2,如果要選出一個成績較好且狀態(tài)穩(wěn)定的組去參賽,那么應選的組是_____.甲乙丙丁7887s211.20.91.818.一組數據1,4,4,3,4,3,4的眾數是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“食品安全”受到全社會的廣泛關注,我區(qū)兼善中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為°;(2)請補全條形統(tǒng)計圖;(3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為2:3,現從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.20.(6分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數).①當x=90時,求出乙隊修路的天數;②求y與x之間的函數關系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.21.(6分)如圖,直線y=x+2與雙曲線y=相交于點A(m,3),與x軸交于點C.求雙曲線的解析式;點P在x軸上,如果△ACP的面積為3,求點P的坐標.22.(8分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.23.(8分)如圖,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,.(1)求直線的表達式;(2)若直線與矩形有公共點,求的取值范圍;(3)直線與矩形沒有公共點,直接寫出的取值范圍.24.(10分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?25.(10分)太陽能光伏建筑是現代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米)26.(12分)工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)求長方體底面面積為12dm2時,裁掉的正方形邊長多大?27.(12分)春節(jié)期間,收發(fā)微信紅包已經成為各類人群進行交流聯系、增強感情的一部分,小王在2017年春節(jié)共收到紅包400元,2019年春節(jié)共收到紅包484元,求小王在這兩年春節(jié)收到紅包的年平均增長率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
由點C是劣弧AB的中點,得到OC垂直平分AB,求得DA=DB=3,根據勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據相似三角形的性質得到PD=2,于是得到結論.【詳解】∵點C是劣弧AB的中點,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據對稱性得,當P在OC的左側時,PB=3+2=5,∴PB的長度為1或5.故選C.【點睛】考查了圓周角,弧,弦的關系,勾股定理,垂徑定理,正確左側圖形是解題的關鍵.2、B【解析】
根據反比例函數的性質判斷即可.【詳解】解:∵當x1<x2<0時,y1<y2,
∴在每個象限y隨x的增大而增大,
∴k<0,
故選:B.【點睛】本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質.3、C【解析】分析:[x]表示不大于x的最大整數,依據題目中提供的操作進行計算即可.詳解:121∴對121只需進行3次操作后變?yōu)?.故選C.點睛:本題是一道關于無理數的題目,需要結合定義的新運算和無理數的估算進行求解.4、C【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.5、B【解析】
根據相似圖形的定義,結合選項中提到的圖形,對選項一一分析,選出正確答案.【詳解】解:A、兩個全等的三角形一定相似,正確;B、兩個等腰三角形一定相似,錯誤,等腰三角形的形狀不一定相同;C、兩個等邊三角形一定相似;正確,等邊三角形形狀相同,只是大小不同;D、兩個等腰直角三角形一定相似,正確,等腰直角三角形形狀相同,只是大小不同.故選B.【點睛】本題考查的是相似形的定義,聯系圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.特別注意,本題是選擇錯誤的,一定要看清楚題.6、B【解析】根據折疊前后對應角相等可知.
解:設∠ABE=x,
根據折疊前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.7、C【解析】
過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質及等邊三角形的性質即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點睛】本題主要考查了平行四邊形的判定及性質以及等邊三角形的判定及性質,等邊三角形的性質:等邊三角形的三個內角都相等,且都等于60°.8、D【解析】
過點C作CD⊥x軸與D,如圖,先利用一次函數圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數的基本概念。角角邊定理、全等三角形的性質以及一次函數的應用,熟練掌握相關知識點是解答的關鍵.9、C【解析】試題分析:一枚質地均勻的正方體骰子的六個面上分別刻有1到6的點數,擲一次這枚骰子,向上的一面的點數為偶數的有3種情況,故選C.考點:正方體相對兩個面上的文字.10、C【解析】分析:根據中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.詳解:A.正五邊形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.B.平行四邊形,是中心對稱圖形,不是軸對稱圖形,故本選項錯誤.C.矩形,既是中心對稱圖形又是軸對稱圖形,故本選項正確.D.等邊三角形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.點睛:本題考查了對中心對稱圖形和軸對稱圖形的判斷,我們要熟練掌握一些常見圖形屬于哪一類圖形,這樣在實際解題時,可以加快解題速度,也可以提高正確率.11、D【解析】
先求出AB的長,再求出AC的長,由B、C到A的距離及圓半徑的長的關系判斷B、C與圓的關系.【詳解】由題意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,點B、點C都在⊙A外.故答案選D.【點睛】本題考查的知識點是點與圓的位置關系,解題的關鍵是熟練的掌握點與圓的位置關系.12、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因為圓柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】∵2(+)=+,∴2+2=+,∴=-2,故答案為.點睛:本題看成平面向量、一元一次方程等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考基礎題.14、【解析】試題分析:根據題意得;;;根據以上規(guī)律可得:=.考點:規(guī)律題.15、1,2,1.【解析】
去分母,移項,合并同類項,系數化成1即可求出不等式的解集,根據不等式的解集即可求出答案.【詳解】,
∴1-x≥-2,
∴-x≥-1,
∴x≤1,
∴不等式的正整數解是1,2,1,
故答案為:1,2,1.【點睛】本題考查了解一元一次不等式和一元一次不等式的整數解,關鍵是求出不等式的解集.16、【解析】
根據新定義的運算法則進行計算即可得.【詳解】∵※=,∴8※4=,故答案為.17、丙【解析】
先比較平均數得到乙組和丙組成績較好,然后比較方差得到丙組的狀態(tài)穩(wěn)定,于是可決定選丙組去參賽.【詳解】因為乙組、丙組的平均數比甲組、丁組大,而丙組的方差比乙組的小,所以丙組的成績比較穩(wěn)定,所以丙組的成績較好且狀態(tài)穩(wěn)定,應選的組是丙組.故答案為丙.【點睛】本題考查了方差:一組數據中各數據與它們的平均數的差的平方的平均數,叫做這組數據的方差.方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數的意義.18、1【解析】
本題考查了統(tǒng)計的有關知識,眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.【詳解】在這一組數據中1是出現次數最多的,故眾數是1.故答案為1.【點睛】本題為統(tǒng)計題,考查了眾數的定義,是基礎題型.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)60,1°.(2)補圖見解析;(3)【解析】
(1)根據了解很少的人數和所占的百分百求出抽查的總人數,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數;(2)用調查的總人數減去“基本了解”“了解很少”和“基本了解”的人數,求出了解的人數,從而補全統(tǒng)計圖;(3)根據題意先畫出樹狀圖,再根據概率公式即可得出答案.【詳解】(1)接受問卷調查的學生共有30÷50%=60(人),扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數有:60﹣15﹣30﹣10=5(人),補圖如下:(3)畫樹狀圖得:?∵共有20種等可能的結果,恰好抽到1個男生和1個女生的有12種情況,∴恰好抽到1個男生和1個女生的概率為=.【點睛】此題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,讀懂題意,根據題意求出總人數是解題的關鍵;概率=所求情況數與總情況數之比.20、(1)35,50;(2)①12;②y=﹣x+;③150米.【解析】
(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成所需時間可得乙隊每天修路的長度m;(2)①根據:甲隊先修建的長度+(甲隊每天修建長度+乙隊每天修建長度)×兩隊合作時間=總長度,列式計算可得;②由①中的相等關系可得y與x之間的函數關系式;③根據:甲隊先修x米的費用+甲、乙兩隊每天費用×合作時間≤22800,列不等式求解可得.【詳解】解:(1)甲隊單獨完成這項工程所需天數n=1050÷30=35(天),則乙單獨完成所需天數為21天,∴乙隊每天修路的長度m=1050÷21=50(米),故答案為35,50;(2)①乙隊修路的天數為=12(天);②由題意,得:x+(30+50)y=1050,∴y與x之間的函數關系式為:y=﹣x+;③由題意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,答:若總費用不超過22800元,甲隊至少先修了150米.【點睛】本題考查了一次函數的應用,解題的關鍵是熟練的掌握一次函數的應用.21、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A點坐標代入直線解析式可求得m的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(t,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于t的方程,則可求得P點坐標.詳解:(1)把A點坐標代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A點也在雙曲線上,∴k=2×3=6,∴雙曲線解析式為y=;(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵點P在x軸上,∴可設P點坐標為(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面積為3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P點坐標為(﹣6,0)或(﹣2,0).點睛:本題主要考查函數圖象的交點,掌握函數圖象的交點坐標滿足每個函數解析式是解題的關鍵.22、(1)證明見解析(2)BC=【解析】
(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質.23、(1);(2);(3)【解析】
(1)由條件可求得A、C的坐標,利用待定系數法可求得直線AC的表達式;(2)結合圖形,當直線平移到過C、A時與矩形有一個公共點,則可求得b的取值范圍;(3)由題意可知直線l過(0,10),結合圖象可知當直線過B點時與矩形有一個公共點,結合圖象可求得k的取值范圍.【詳解】解:(1),設直線表達式為,,解得直線表達式為;(2)直線可以看到是由直線平移得到,當直線過時,直線與矩形有一個公共點,如圖1,當過點時,代入可得,解得.當過點時,可得直線與矩形有公共點時,的取值范圍為;(3),直線過,且,如圖2,直線繞點旋轉,當直線過點時,與矩形有一個公共點,逆時針旋轉到與軸重合時與矩形有公共點,當過點時,代入可得,解得直線:與矩形沒有公共點時的取值范圍為【點睛】本題為一次函數的綜合應用,涉及待定系數法、直線的平移、旋轉及數形結合思想等知識.在(1)中利用待定系數法是解題的關鍵,在(2)、(3)中確定出直線與矩形OABC有一個公共點的位置是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.24、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解析】
(1)根據正方形的性質,可得EF=CE,再根據∠CEF=∠90°,進而可得∠FEH=∠DCE,結合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質可得FH=ED;(2)設AE=a,用含a的函數表示△AEF的面積,再利用函數的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 紡絲凝固浴液配制工崗前保密考核試卷含答案
- 流體裝卸操作工崗前崗位考核試卷含答案
- 獸用中藥制劑工班組安全水平考核試卷含答案
- 2025年年樂高教育項目合作計劃書
- 2025年中高壓及特殊性能玻璃鋼管項目合作計劃書
- 班主任教師培訓課件內容
- 2026年柔性直流輸電項目營銷方案
- 2026年年度學校辦公室主任工作總結
- 2025年人工智能綜合試題及答案
- 幼兒園校園欺凌事件強制報告制度規(guī)定
- (2021-2025)5年高考1年模擬物理真題分類匯編專題04 機械能守恒、動量守恒及功能關系(廣東專用)(解析版)
- 2025年車間核算員考試題及答案
- 2026年高考作文備考之提高議論文的思辨性三大技法
- 南寧市人教版七年級上冊期末生物期末考試試卷及答案
- 項目安全生產管理辦法
- 小學美術科組匯報
- 手術室膽囊結石護理查房
- 2024年江西新能源科技職業(yè)學院公開招聘輔導員筆試題含答案
- 機械門鎖維修施工方案
- QGDW10384-2023輸電線路鋼管塔加工技術規(guī)程
- 江蘇省南通市2025年中考物理試卷(含答案)
評論
0/150
提交評論