版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
關(guān)于不定積分公式大全第1頁(yè),共39頁(yè),2023年,2月20日,星期二例1求下列函數(shù)的一個(gè)原函數(shù):⑴f(x)=2x⑵f(x)=cosx解:⑴∵(x2)'=2x∴x2是函數(shù)2x的一個(gè)原函數(shù)⑵∵(sinx)'=cosx∴sinx是函數(shù)cosx的一個(gè)原函數(shù)這里為什么要強(qiáng)調(diào)是一個(gè)原函數(shù)呢?因?yàn)橐粋€(gè)函數(shù)的原函數(shù)不是唯一的。例如在上面的⑴中,還有(x2+1)'=2x,
(x2-1)'=2x
所以x2、x2+1、x2-1、x2+C(C為任意常數(shù))都是函數(shù)f(x)=2x的原函數(shù)。第2頁(yè),共39頁(yè),2023年,2月20日,星期二[定理5.1]
設(shè)F(x)是函數(shù)f(x)在區(qū)間I上的一個(gè)原函數(shù),C是一個(gè)任意常數(shù),那么,⑴F(x)+C也是f(x)
在該區(qū)間I上的原函數(shù)⑵f(x)該在區(qū)間I上的全體原函數(shù)可以表示為F(x)+C證明:⑴∵[F(X)+C]'=F'(x)+(C)'=f(x)∴F(x)+C也是f(x)的原函數(shù)⑵略第3頁(yè),共39頁(yè),2023年,2月20日,星期二
這說(shuō)明函數(shù)f(x)如果有一個(gè)原函數(shù)F(x),那么它就有無(wú)窮多個(gè)原函數(shù),它們都可以表示為F(x)+C的形式。[定義5.2]
函數(shù)f(x)的全體原函數(shù)叫做函數(shù)f(x)的不定積分,記作∫f(x)dx,其中∫叫做積分號(hào),f(x)叫做被積函數(shù),x叫做積分變量。求函數(shù)f(x)的不定積分就是求它的全體原函數(shù),因此,∫f(x)dx=F(x)+C
其中C是任意常數(shù),叫做積分常數(shù)。第4頁(yè),共39頁(yè),2023年,2月20日,星期二例2求下列不定積分⑴∫x5dx⑵∫sinxdx解:⑴∵是x5的一個(gè)原函數(shù)∴⑵∵-cosx是sinx的一個(gè)原函數(shù)∴第5頁(yè),共39頁(yè),2023年,2月20日,星期二二、不定積分的幾何意義
設(shè)F(x)是函數(shù)f(x)的一個(gè)原函數(shù),則曲線y=F(x)稱為f(x)的一條積分曲線,曲線y=F(x)+C表示把曲線y=F(x)上下平移所得到的曲線族。因此,不定積分的幾何意義是指由f(x)的全體積分曲線組成的積分曲線族。例4求斜率為2x且經(jīng)過(guò)點(diǎn)(1,0)的曲線。解:設(shè)所求曲線為y=f(x),則f’(x)=2x,故y=x2+C,∵曲線過(guò)點(diǎn)(1,0)∴以x=1、y=0代入得0=12+C,解得C=-1,因此,所求曲線為y=x2-1。第6頁(yè),共39頁(yè),2023年,2月20日,星期二三、基本積分公式由于積分運(yùn)算是求導(dǎo)運(yùn)算的逆運(yùn)算,所以由基本求導(dǎo)公式反推,可得基本積分公式⑴∫dx=x+C⑵∫xαdx=(α≠-1)⑶
⑷⑸∫exdx=ex+C⑹∫sinxdx=-cosx+C⑺∫cosxdx=sinx+C⑻∫sec2xdx=tanx+C⑼∫csc2xdx=-cotx+C⑽⑾第7頁(yè),共39頁(yè),2023年,2月20日,星期二說(shuō)明:冪函數(shù)的積分結(jié)果可以這樣求,先將被積函數(shù)的指數(shù)加1,再把指數(shù)的倒數(shù)放在前面做系數(shù)。[注意]
不能認(rèn)為arcsinx=-arccosx,他們之間的關(guān)系是arcsinx=π/2-arccosx第8頁(yè),共39頁(yè),2023年,2月20日,星期二四、不定積分的性質(zhì)⑴[∫f(x)dx]'=f(x)
該性質(zhì)表明,如果函數(shù)f(x)先求不定積分再求導(dǎo),所得結(jié)果仍為f(x)⑵∫F'(x)dx=F(x)+C
該性質(zhì)表明,如果函數(shù)F(x)先求導(dǎo)再求不定積分,所得結(jié)果與F(x)相差一個(gè)常數(shù)C⑶∫kf(x)dx=k∫f(x)dx(k為常數(shù))
該性質(zhì)表明,被積函數(shù)中不為零的常數(shù)因子可以提到積分號(hào)的前面⑷∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
該性質(zhì)表明,兩個(gè)函數(shù)的和或差的不定積分等于這兩個(gè)函數(shù)的不定積分的和或差第9頁(yè),共39頁(yè),2023年,2月20日,星期二五、基本積分公式的應(yīng)用例7求∫(9x2+8x)dx解:∫(9x2+8x)dx=∫9x2dx+∫8xdx
=3∫3x2dx+4∫2xdx=3x3+4x2+C例11求∫3xexdx第10頁(yè),共39頁(yè),2023年,2月20日,星期二5.2不定積分的計(jì)算一、直接積分法對(duì)被積函數(shù)進(jìn)行簡(jiǎn)單的恒等變形后直接用不定積分的性質(zhì)和基本積分公式即可求出不定積分的方法稱為直接積分法。運(yùn)用直接積分法可以求出一些簡(jiǎn)單函數(shù)的不定積分。第11頁(yè),共39頁(yè),2023年,2月20日,星期二
第12頁(yè),共39頁(yè),2023年,2月20日,星期二一、第一換元法(湊微分法)
如果被積函數(shù)的自變量與積分變量不相同,就不能用直接積分法。例如求∫cos2xdx,被積函數(shù)的自變量是2x,積分變量是x。這時(shí),我們可以設(shè)被積函數(shù)的自變量為u,如果能從被積式中分離出一個(gè)因子u’(x)來(lái),那么根據(jù)∫f(u)u'(x)dx=∫f(u)du=F(u)+C就可以求出不定積分。這種積分方法叫做湊微分法。第13頁(yè),共39頁(yè),2023年,2月20日,星期二[講解例題]例2求∫2sin2xdx解:設(shè)u=2x,則du=2dx∫2sin2xdx=∫sin2x·2dx=∫sinudu
=-cosu+C=-cos2x+C注意:最后結(jié)果中不能有u,一定要還原成x。解:設(shè)u=x2+1,則du=2xdx第14頁(yè),共39頁(yè),2023年,2月20日,星期二
解:設(shè)u=x2,則du=2xdx
設(shè)u=cosx,則du=-sinxdx第15頁(yè),共39頁(yè),2023年,2月20日,星期二
當(dāng)計(jì)算熟練后,換元的過(guò)程可以省去不寫。例求∫sin3xcosxdx
解:∫sin3xcosxdx=∫sin3xd(sinx)=sin4x+C第16頁(yè),共39頁(yè),2023年,2月20日,星期二二、第二換元積分法例如,求,把其中最難處理的部分換元,令則原式=,再反解x=u2+1,得dx=2udu,代入這就是第二換元積分法。第17頁(yè),共39頁(yè),2023年,2月20日,星期二
(1)如果被積函數(shù)含有,可以用x=asint換元。
(2)如果被積函數(shù)含有,可以用x=atant換元。第18頁(yè),共39頁(yè),2023年,2月20日,星期二
(3)如果被積函數(shù)含有,可以用x=asect換元。第19頁(yè),共39頁(yè),2023年,2月20日,星期二以下結(jié)果可以作為公式使用:⑿∫tanxdx=ln|secx|+C⒀∫cotdx=-ln|cscx|+C⒁∫secxdx=ln|secx+tanx|+C⒂∫cscxdx=-ln|cscx+cotx|+C⒃⒄⒅第20頁(yè),共39頁(yè),2023年,2月20日,星期二5.3分部積分法一、分部積分公式考察函數(shù)乘積的求導(dǎo)法則:
[u(x)·v(x)]'=u'(x)·v(x)+u(x)·v'(x)兩邊積分得
u(x)·v(x)=∫u'(x)v(x)dx+∫u(x)v'(x)dx于是有∫u(x)·v'(x)dx=u(x)·v(x)-∫u'(x)·v(x)dx或表示成∫u(x)dv(x)=u(x)·v(x)-∫v(x)du(x)這一公式稱為分部積分公式。第21頁(yè),共39頁(yè),2023年,2月20日,星期二二、講解例題例1求∫xexdx解:令u(x)=x,v'(x)=ex
則原式為∫u(x)·v'(x)dx的形式∵(ex)'=ex∴v(x)=ex,由分部積分公式有∫xexdx=x·ex-∫exdx=xex-ex+C例2求∫xcos2xdx解:令u(x)=x,v'(x)=cos2x,則v(x)=sin2x
于是∫xcos2xdx=xsin2x-∫sin2xdx
=xsin2x+cos2x+C第22頁(yè),共39頁(yè),2023年,2月20日,星期二
有時(shí),用分部積分法求不定積分需要連續(xù)使用幾次分部積分公式才可以求出結(jié)果。例5:求∫x2e-2xdx解:令u(x)=x2,v'(x)=e-2x,則v(x)=于是第23頁(yè),共39頁(yè),2023年,2月20日,星期二由此可見:作一次分部積分后,被積函數(shù)中冪函數(shù)的次數(shù)可以降低一次。如果所得到的積分式還需要用分部積分法解,那么,可以再用分部積分公式做下去。為了簡(jiǎn)化運(yùn)算過(guò)程,下面介紹:三、分部積分法的列表解法例如:求∫x2sinxdxx2sinx
求導(dǎo)↓+↓積分
2x--cosx∫x2sinxdx=-x2cosx-∫2x(-cosx)dx第24頁(yè),共39頁(yè),2023年,2月20日,星期二
[分部積分法的列表解法]例如:求∫x2sinxdxx2sinx求導(dǎo)↓↓積分2x-cosx∫x2sinxdx=-x2cosx+∫2xcosxdx=-x2cosx+2xsinx-∫2sinxdx求導(dǎo)↓
2↓積分-sinx=-x2cosx+2xsinx+2cosx+C求導(dǎo)↓
0↓積分+cosx
+-
-++第25頁(yè),共39頁(yè),2023年,2月20日,星期二例4:求∫xlnxdxxlnx
求導(dǎo)↓↓積分
1?這說(shuō)明把lnx放在右邊用分部積分法解不下去。把lnx放在左邊用分部積分法解:
lnxx
求導(dǎo)↓+↓積分
-第26頁(yè),共39頁(yè),2023年,2月20日,星期二[一般原則]對(duì)數(shù)函數(shù)、反三角函數(shù)、冪函數(shù)應(yīng)放在左邊,指數(shù)函數(shù)、三角函數(shù)應(yīng)放在右邊。有些單獨(dú)一個(gè)函數(shù)的不定積分也要用分部積分法解。例3:求∫lnxdxlnx1
求導(dǎo)↓+↓積分
-x=xlnx-∫dx=xlnx-x+C第27頁(yè),共39頁(yè),2023年,2月20日,星期二例6求∫arcsinxdxarcsinx
1
求導(dǎo)↓+↓積分
-x例71
求導(dǎo)↓↓積分
x第28頁(yè),共39頁(yè),2023年,2月20日,星期二例8求∫exsin3xdx解:∫exsin3xdx=exsin3x-3∫excos3xdx
=exsin3x-3excos3x-9∫exsin3xdx移項(xiàng)得∫exsin3xdx=ex(si3nx-3cos3x)+C5.4有理函數(shù)積分法一、有理函數(shù)的定義有理函數(shù)是指分子、分母都是多項(xiàng)式的分式函數(shù),形如第29頁(yè),共39頁(yè),2023年,2月20日,星期二二、真分式的部分分式分解設(shè)分子的次數(shù)為n,分母的次數(shù)為m。當(dāng)n<m時(shí),該分式稱為真分式;當(dāng)n≥m時(shí),該分式稱為假分式。假分式可以寫成多項(xiàng)式與真分式的和。這里主要講解真分式的部分分式分解。例 分解成部分分式解:因?yàn)榉帜负?x-1)的三重因式,所以設(shè)第30頁(yè),共39頁(yè),2023年,2月2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 互聯(lián)網(wǎng)法規(guī)培訓(xùn)課件模板
- 2026年劇本殺運(yùn)營(yíng)公司異業(yè)合作洽談管理制度
- 互聯(lián)網(wǎng)會(huì)計(jì)面試自我介紹
- 人工智能推進(jìn)基礎(chǔ)教育公平的現(xiàn)實(shí)隱憂與優(yōu)化路徑
- 2025年智能機(jī)器人行業(yè)創(chuàng)新與全球市場(chǎng)趨勢(shì)報(bào)告
- 2025年人工智能智能客服機(jī)器人技術(shù)創(chuàng)新在教育行業(yè)的應(yīng)用可行性報(bào)告
- 邊防輔警面試題目及答案
- 保險(xiǎn)公司紀(jì)檢巡查制度
- 分級(jí)護(hù)理制度的護(hù)理團(tuán)隊(duì)建設(shè)
- 企業(yè)案經(jīng)日制度
- 2026年藥店培訓(xùn)計(jì)劃試題及答案
- 2026春招:中國(guó)煙草真題及答案
- 物流鐵路專用線工程節(jié)能評(píng)估報(bào)告
- 2026河南省氣象部門招聘應(yīng)屆高校畢業(yè)生14人(第2號(hào))參考題庫(kù)附答案
- 2026天津市南開區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位60人(含高層次人才)備考核心試題附答案解析
- 2025江蘇無(wú)錫市宜興市部分機(jī)關(guān)事業(yè)單位招聘編外人員40人(A類)備考筆試試題及答案解析
- 卵巢過(guò)度刺激征課件
- 漢服行業(yè)市場(chǎng)壁壘分析報(bào)告
- 2026華潤(rùn)燃?xì)庑@招聘(公共基礎(chǔ)知識(shí))綜合能力測(cè)試題附答案解析
- 第21章 反比例函數(shù)(單元測(cè)試·綜合卷)(含答案)-滬科版(2024)九上
- 臨床試驗(yàn)風(fēng)險(xiǎn)管理計(jì)劃(RMP)編制規(guī)范
評(píng)論
0/150
提交評(píng)論