2022年內(nèi)蒙古自治區(qū)巴彥淖爾市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2022年內(nèi)蒙古自治區(qū)巴彥淖爾市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2022年內(nèi)蒙古自治區(qū)巴彥淖爾市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2022年內(nèi)蒙古自治區(qū)巴彥淖爾市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2022年內(nèi)蒙古自治區(qū)巴彥淖爾市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年內(nèi)蒙古自治區(qū)巴彥淖爾市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________一、單選題(20題)1.A.A.

B.

C.

D.

2.下列說法中不能提高梁的抗彎剛度的是()。

A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)

3.

4.

5.用待定系數(shù)法求微分方程y"-y=xex的一個特解時,特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex

B.(αx2+b)ex

C.αx2ex

D.(αx+b)ex

6.當(dāng)x→0時,x+x2+x3+x4為x的

A.等價無窮小B.2階無窮小C.3階無窮小D.4階無窮小

7.下列關(guān)于動載荷的敘述不正確的一項(xiàng)是()。

A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線運(yùn)動時的動荷因數(shù)為

C.自由落體沖擊時的動荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

8.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

9.()。A.

B.

C.

D.

10.設(shè)f'(x)=1+x,則f(x)等于().A.A.1

B.X+X2+C

C.x++C

D.2x+x2+C

11.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為

A.2B.-2C.3D.-3

12.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

13.

14.設(shè)函數(shù)y=2x+sinx,則y'=

A.1+cosxB.1-cosxC.2+cosxD.2-cosx

15.

16.

17.A.A.f(2)-f(0)

B.

C.

D.f(1)-f(0)

18.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

19.

A.0

B.

C.1

D.

20.A.x2+C

B.x2-x+C

C.2x2+x+C

D.2x2+C

二、填空題(20題)21.

22.

23.

24.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.

25.

26.

27.

28.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為______.

29.

30.

31.

32.微分方程y=0的通解為.

33.設(shè)函數(shù)y=x2+sinx,則dy______.

34.

35.

36.

37.

38.設(shè)區(qū)域D為y=x2,x=y2圍成的在第一象限內(nèi)的區(qū)域,則=______.

39.

40.

三、計(jì)算題(20題)41.求微分方程的通解.

42.證明:

43.

44.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

45.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

46.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則

47.

48.求曲線在點(diǎn)(1,3)處的切線方程.

49.

50.

51.求微分方程y"-4y'+4y=e-2x的通解.

52.

53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

55.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.

56.

57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

58.將f(x)=e-2X展開為x的冪級數(shù).

59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

60.

四、解答題(10題)61.

62.證明:ex>1+x(x>0)

63.(本題滿分8分)設(shè)y=y(x)由方程x2+2y3+2xy+3y-x=1確定,求y’

64.用鐵皮做一個容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時,所使用的鐵皮面積最小。

65.

66.計(jì)算

67.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.求函數(shù)I(x)=

的極值。

六、解答題(0題)72.

參考答案

1.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

可知應(yīng)選A.

2.A

3.A

4.A

5.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1

y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。

所以選A。

6.A本題考查了等價無窮小的知識點(diǎn)。

7.C

8.A

9.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。

10.C本題考查的知識點(diǎn)為不定積分的性質(zhì).

可知應(yīng)選C.

11.C解析:

12.A

13.D解析:

14.D本題考查了一階導(dǎo)數(shù)的知識點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.

15.A解析:

16.A

17.C本題考查的知識點(diǎn)為牛頓一萊布尼茨公式和不定積分的性質(zhì).

可知應(yīng)選C.

18.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

19.A

20.B本題考查的知識點(diǎn)為不定積分運(yùn)算.

因此選B.

21.

本題考查的知識點(diǎn)為定積分運(yùn)算.

22.

23.

24.

25.

26.00解析:

27.

解析:

28.

;本題考查的知識點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題.

由于x2+y2≤a2,y>0可以表示為

0≤θ≤π,0≤r≤a,

因此

29.

30.

31.

32.y=C.

本題考查的知識點(diǎn)為微分方程通解的概念.

微分方程為y=0.

dy=0.y=C.

33.(2x+cosx)dx;本題考查的知識點(diǎn)為微分運(yùn)算.

解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,

可知dy=(2x+cosx)dx.

解法2利用微分運(yùn)算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.

34.

解析:

35.π/8

36.

37.12x12x解析:

38.1/3;本題考查的知識點(diǎn)為二重積分的計(jì)算.

39.

40.

41.

42.

43.

44.

45.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

46.由等價無窮小量的定義可知

47.

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.

50.

51.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

52.

53.由二重積分物理意義知

54.

55.

56.由一階線性微分方程通解公式有

57.

列表:

說明

58.

59.函數(shù)的定義域?yàn)?/p>

注意

60.

61.

62.

63.本題考查的知識點(diǎn)為隱函數(shù)求導(dǎo)法.

解法1將所給方程兩端關(guān)于x求導(dǎo),可得

解法2

y=y(tǒng)(x)由方程F(x,y)=0確定,求y通常有兩種方法:

-是將F(x,y)=0兩端關(guān)于x求導(dǎo),認(rèn)定y為中間變量,得到含有y的方程,從中解出y.

對于-些特殊情形,可以從F(x,y)=0中較易地解出y=y(tǒng)(x)時,也可以先求出y=y(tǒng)(x),再直接求導(dǎo).

64.

于是由實(shí)際問題得,S存在最小值,即當(dāng)圓柱的高等于地面的直徑時,所使用的鐵皮面積最小。于是由實(shí)際問題得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論