2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.

2.A.A.

B.B.

C.C.

D.D.

3.

4.

5.A.-1

B.1

C.

D.2

6.().A.A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸

7.A.A.小于0B.大于0C.等于0D.不確定

8.函數(shù)z=x2-xy+y2+9x-6y+20有()

A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1

9.管理幅度是指一個主管能夠直接、有效地指揮下屬成員的數(shù)目,經(jīng)研究發(fā)現(xiàn),高層管理人員的管理幅度通常以()較為合適。

A.4~8人B.10~15人C.15~20人D.10~20人

10.下列結(jié)論正確的有A.若xo是f(x)的極值點(diǎn),則x0一定是f(x)的駐點(diǎn)

B.若xo是f(x)的極值點(diǎn),且f’(x0)存在,則f’(x)=0

C.若xo是f(x)的駐點(diǎn),則x0一定是f(xo)的極值點(diǎn)

D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)

11.設(shè)y=5x,則y'=A.A.5xln5

B.5x/ln5

C.x5x-1

D.5xlnx

12.已知作用在簡支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同

13.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.

B.

C.

D.

14.

A.必定存在且值為0B.必定存在且值可能為0C.必定存在且值一定不為0D.可能不存在

15.

16.

17.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)

18.

19.

20.

二、填空題(20題)21.22.

23.

24.

25.

26.

27.設(shè)y=cos3x,則y'=__________。

28.

29.

30.

31.微分方程exy'=1的通解為______.32.設(shè)z=x3y2,則33.

34.

35.

36.

37.38.39.

40.

三、計(jì)算題(20題)41.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價(jià)格上漲1%,需求量增(減)百分之幾?

42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.43.將f(x)=e-2X展開為x的冪級數(shù).44.當(dāng)x一0時f(x)與sin2x是等價(jià)無窮小量,則45.46.求曲線在點(diǎn)(1,3)處的切線方程.47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.49.50.51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.52.證明:

53.

54.求微分方程y"-4y'+4y=e-2x的通解.

55.

56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.58.求微分方程的通解.59.

60.

四、解答題(10題)61.

62.

63.

64.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.

65.

66.

67.設(shè)z=z(x,y)由方程e2-xy+y+z=0確定,求dz.68.

69.

70.求y=xlnx的極值與極值點(diǎn).五、高等數(shù)學(xué)(0題)71.

在t=1處的切線方程_______。

六、解答題(0題)72.

參考答案

1.C

2.B本題考查了已知積分函數(shù)求原函數(shù)的知識點(diǎn)

3.C

4.B

5.A

6.B本題考查的知識點(diǎn)為利用一階導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.

7.C

8.D

9.A解析:高層管理人員的管理幅度通常以4~8人較為合適。

10.B

11.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。

12.D

13.A本題考查的知識點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.

由于在極坐標(biāo)系下積分區(qū)域D可以表示為

0≤θ≤π,0≤r≤a.

因此

故知應(yīng)選A.

14.B

15.A

16.C

17.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)

f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。

令f'(x)=0得駐點(diǎn)x1=1,x2=2。

當(dāng)x<1時,f'(x)>0,f(x)單調(diào)增加。

當(dāng)1<x<2時,f'(x)<0,f(x)單調(diào)減少。

當(dāng)x>2時,f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。

18.C解析:

19.C

20.C21.本題考查的知識點(diǎn)為平面方程和平面與直線的關(guān)系.由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,一3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y一3z=0.

22.

23.12x12x解析:

24.90

25.<0

26.33解析:

27.-3sin3x

28.2yex+x

29.(03)(0,3)解析:

30.

解析:31.y=-e-x+C本題考查的知識點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

由于方程為exy'=1,先變形為

變量分離dy=e-xdx.

兩端積分

為所求通解.32.12dx+4dy;本題考查的知識點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

由于z=x3y2可知,均為連續(xù)函數(shù),因此

33.31/16;2本題考查了函數(shù)的最大、最小值的知識點(diǎn).

f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以f"(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時,f(x)最大,即b=2;當(dāng)x=2時,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.

34.

35.

36.

本題考查的知識點(diǎn)為隱函數(shù)的微分.

解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得

從而

解法2將所給表達(dá)式兩端微分,

37.

38.本題考查的知識點(diǎn)為求二元函數(shù)的全微分.

通常求二元函數(shù)的全微分的思路為:

39.

本題考查的知識點(diǎn)為二重積分的性質(zhì).

40.極大值為8極大值為8

41.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價(jià)格上漲1%需求量減少2.5%

42.

43.44.由等價(jià)無窮小量的定義可知

45.

46.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

47.

列表:

說明

48.函數(shù)的定義域?yàn)?/p>

注意

49.

50.

51.

52.

53.

54.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

55.

56.

57.由二重積分物理意義知

58.

59.

60.由一階線性微分方程通解公式有

61.

62.

63.64.由于直線2x-6y+1=0的斜率k=1/3,與其垂直的直線的斜率k1=-1/k=-3.對于y=x3+3x25,y'=3x2+6x.由題意應(yīng)有3x2+6x=-3,因此x2+2x+1=0,x=-1,此時y=(-1)3+3(-1)2-5=-3.即切點(diǎn)為(-1,-3).切線方程為y+3=-3(x+1),或?qū)憺?x+y+6=0.本題考查的知識點(diǎn)為求曲線的切線方程.

求曲線y=f(x,y)的切線方程,通常要找出切點(diǎn)及函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值.所給問題沒有給出切點(diǎn),因此依已給條件找出切點(diǎn)是首要問題.得出切點(diǎn)、切線的斜率后,可依直線的點(diǎn)斜式方程求出切線方程.

65.

66.

67.

;本題考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論