2022-2023學(xué)年遼寧省朝陽(yáng)市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022-2023學(xué)年遼寧省朝陽(yáng)市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022-2023學(xué)年遼寧省朝陽(yáng)市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022-2023學(xué)年遼寧省朝陽(yáng)市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022-2023學(xué)年遼寧省朝陽(yáng)市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年遼寧省朝陽(yáng)市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)y=e-3x,則dy=A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

2.

3.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按

規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。

A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s

B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2

C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0

D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2

4.

A.2x2+x+C

B.x2+x+C

C.2x2+C

D.x2+C

5.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

6.

7.

8.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

9.設(shè)y=2x,則dy=A.A.x2x-1dx

B.2xdx

C.(2x/ln2)dx

D.2xln2dx

10.

11.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C

12.

13.

14.A.A.4B.3C.2D.1

15.

16.

17.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-218.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確19.設(shè)y=f(x)在(a,b)內(nèi)有二階導(dǎo)數(shù),且f"<0,則曲線y=f(x)在(a,b)內(nèi)().A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少

20.

二、填空題(20題)21.

22.

23.

24.設(shè)當(dāng)x≠0時(shí),在點(diǎn)x=0處連續(xù),當(dāng)x≠0時(shí),F(xiàn)(x)=-f(x),則F(0)=______.25.

26.

27.

28.y=x3-27x+2在[1,2]上的最大值為______.29.

30.

31.

32.33.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為______.

34.

35.冪級(jí)數(shù)的收斂半徑為______.

36.

37.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

38.

39.

40.設(shè)f(x)=esinx,則=________。三、計(jì)算題(20題)41.42.求微分方程的通解.43.求曲線在點(diǎn)(1,3)處的切線方程.

44.

45.46.將f(x)=e-2X展開為x的冪級(jí)數(shù).47.

48.證明:49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

50.求微分方程y"-4y'+4y=e-2x的通解.

51.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.53.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

55.

56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).57.

58.59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

60.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

四、解答題(10題)61.

62.

63.將展開為x的冪級(jí)數(shù).

64.

65.

66.

67.68.69.(本題滿分8分)

70.(本題滿分10分)求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.五、高等數(shù)學(xué)(0題)71.

;D:x2+y2≤4。

六、解答題(0題)72.

參考答案

1.C

2.C解析:

3.D

4.B

5.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

6.B

7.B

8.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).

可知應(yīng)選C.

9.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。

10.A

11.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).

由題設(shè)知∫f(x)dx=F(x)+C,因此

可知應(yīng)選D.

12.D解析:

13.B

14.C

15.A

16.C

17.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).

18.D

19.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

由于在(a,b)區(qū)間內(nèi)f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹的,因此選A.

20.B解析:

21.

22.

23.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).24.1本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

由連續(xù)性的定義可知,若F(x)在點(diǎn)x=0連續(xù),則必有,由題設(shè)可知

25.

26.3x2+4y

27.2

28.-24本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:

(1)求出f'(x).

(2)求出f(x)在(a,b)內(nèi)的駐點(diǎn)x1,…,xk.

(3)比較f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值為f(x)在[a,b]上的最大(小)值,相應(yīng)的點(diǎn)x為f(x)的最大(小)值點(diǎn).

y=x3-27x+2,

則y'=3x2-27=3(x-3)(x+3),

令y'=0得y的駐點(diǎn)x1=-3,x2=3,可知這兩個(gè)駐點(diǎn)都不在(1,2)內(nèi).

由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值為-24.

本題考生中出現(xiàn)的錯(cuò)誤多為求出駐點(diǎn)x1=-3,x2=3之后,直接比較

f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,

得出y=x3-27x+2在[1,2]上的最大值為f(-3)=56.其錯(cuò)誤的原因是沒有判定駐點(diǎn)x1=-3,x2=3是否在給定的區(qū)間(1,2)內(nèi),這是值得考生注意的問題.在模擬試題中兩次出現(xiàn)這類問題,目的就是希望能引起考生的重視.

本題還可以采用下列解法:注意到y(tǒng)'=3(x-3)(x+3),在區(qū)間[1,2]上有y'<0,因此y為單調(diào)減少函數(shù)??芍?/p>

x=2為y的最小值點(diǎn),最小值為y|x=2=-44.

x=1為y的最大值點(diǎn),最大值為y|x=1=-24.29.

30.ex2

31.

32.1.

本題考查的知識(shí)點(diǎn)為反常積分,應(yīng)依反常積分定義求解.

33.

;本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題.

由于x2+y2≤a2,y>0可以表示為

0≤θ≤π,0≤r≤a,

因此

34.(-24)(-2,4)解析:

35.

;

36.37.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。

由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。

38.11解析:

39.

解析:40.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。

41.

42.43.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

44.

45.

46.47.由一階線性微分方程通解公式有

48.

49.由二重積分物理意義知

50.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

51.由等價(jià)無窮小量的定義可知

52.

53.

54.函數(shù)的定義域?yàn)?/p>

注意

55.

56.

列表:

說明

57.

58.

59.

60.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

61.

62.

63.

;本題考查的知識(shí)點(diǎn)為將初等函數(shù)展開為x的冪級(jí)數(shù).

如果題目中沒有限定展開方法,一律要利用間接展開法.這要求考生記住幾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論