版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Word第第頁高中數(shù)學大題解題技巧高中數(shù)學大題解題技巧:三角函數(shù)與向量
平移問題:永久記住左右平移只是對x做改變,上下平移就是對y考點:對于這類題型我們首先要知道它一般都是考我們什么,我覺做改變,永久切記。
高中數(shù)學大題解題技巧:概率題
它主要是考我們向量的數(shù)量積以及三角函數(shù)的化簡問題看,同時可能會涉及到正余弦考點:對文科生來說,這個類型的題主要是考我們對題目意思的定理,難度一般不大。理解,在解題過程能學
只要你能嫻熟把握公式,這類題都不是問題。會樹狀圖和列表,題目也是相當?shù)暮啙?,只要你能審題精確,這類題型:這部分大題一般都是涉及以下的題型:題都是送分題;對理
最值(值域)、單調(diào)性、周期性、對稱性、未知數(shù)的取值范圍、平移科生來說,主要留意結(jié)合排列組合、重復試驗學問點,同時會問題等要求我們精確把握分
解題思路:布列、期望、方差的公式,難度也是不大,都屬于送分題,是要求第一步就是根依據(jù)向量公式將表示出來:其表示共有兩種方法,一我們必需拿全部分數(shù)。
種是模長公式(該種方法是在題目沒有告知坐標的狀況下應用),即,題型:在這里我就不多說了,都是求概率,沒有什么新奇的地方,另一種就是用坐標公式表示出來(該種方法是在題目告知了坐標),不過要留意我們曾經(jīng)
即在這里遇到過的線性規(guī)劃問題,還有就是籃球勝利率與命中率和防其次步就是三角函數(shù)的化簡:化簡的方法都是涉及到三角函數(shù)的誘守率之間關(guān)系的類似
導公式(只要題目消失了跟或者有關(guān)的角度,肯定想到誘導公式),題目。
解題思路:
第一步就是求出總體的狀況
其次步就是求出符合題意的狀況
第三步就是將兩者比起來就是題目要求的概率
這類型題目對理科生來說肯定要把握好期望與方差的公式,同時最重要的是重復試驗概率的求法。
高中數(shù)學大題解題技巧:幾何題
考點:這類題主要是考察咱們對空間物體的感覺,盼望大家在平常學習過程中,多培育一些立體的、空間的感覺,將自己設(shè)身處地于那么一個立體的空間中去,這類題對文科生來說,難度都比較簡潔,但是對理科生來說,可能會比較冗雜一些,特殊是在二面角的求法上,對理科生來說是一個巨大的挑戰(zhàn),它需要理科生能對兩個面夾角培育出感情來,這樣幫助線的做法以及邊長的求法就變得如此之簡潔了。
題型:這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),其次類就是證明垂直(線線垂直、線面垂直、面面垂直);其次就是計算題,包括棱錐體的體積公式計算、點到面的距離、有關(guān)二面角的計算(理科生把握)解題思路:
證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般狀況下沒有現(xiàn)成的線存在,這個時候需要我們在面做一條幫助線去跟線平行,一般這條幫助線的作法就是找中點);另一種方法就是過直線作一個平面與面平行即可,幫助面的作法也基本上是找中點。
證面面平行:這類題比較簡潔,即證明這兩個平面的兩條相交線對應平行即可。
證線面垂直如直線與面:這類型的題主要是看有前提沒有,即假如直線所在的平面與面在題目中已經(jīng)告知我們是垂直關(guān)系了,那么我們只需要證明直線垂直于面與面的交線即可;假如題目中沒有說直線所在的平面與面是垂直的關(guān)系,那么我們需要證明直線垂直面內(nèi)的兩條相交線即可。
其實說實話,證明垂直的問題都是很簡潔的,一般都有什么勾股定理呀,還有更多的是依據(jù)一個定理(一條直線垂直于一個面,那么這條直線就垂直這個面的任何一條線)來證明垂直。
證面面垂直與證面面垂直:這類問題也比較簡潔,就是需要轉(zhuǎn)化為證線面垂直即可。
體積和點到面的距離計算:假如是三棱錐的體積要留意等體積法公式的應用,一般狀況就是考這個東西,沒有什么難度的,關(guān)鍵是高的查找,肯定要留意,只要你找到了高你就成功了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計算:這類型對理科生來說是一個噩夢,其難度有二,第一是首先你要找到二面角在什么地方,另一個難度就是你要知道這個二面角所在直角三角形的邊長分別是多少。
二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個面的頂點A動身引向另一個面的垂線,垂足為B,然后過垂足B向這兩個面的交線做垂線,垂足為C,最終將A點與C點連接起來,這樣即為二面角(說白了就是應用三垂線定理來找)
二面角所在直角三角形的邊長求法:一般應用勾股定理,相像三角形,等面積法,正余弦定理等。
這里我著重說一下就是在題目中可能會消失這樣的狀況,就是兩個面的相交處是一個點,這個時候需要我們過這個點補充完好兩個面的交線,不知道怎么補交線的跟我說一聲。
高中數(shù)學大題解題技巧:圓錐曲線
考點:這類題型,其實難度真的不是很大,我個人理解主要是考大家的計算力量怎么樣,還有就是對題目的理解力量,同時也盼望大家都能明白圓錐曲線中a,b,c,e的含義以及他們之間的關(guān)系,還有就是橢圓、雙曲線、拋物線的兩種定義,假如你如今還不知道,趁早去記一下,不然考試的時候都不知道的哈,我真的無語了。題型:這種類型的題一般都是以下幾種出法:第一個問一般狀況就是求圓錐曲線方程或者就是求某一個點的軌跡方程,其次個問一般都是涉及到直線的問題,要么就是求范圍,要么就是求定值,要么就是求直線方程解題思路:
求圓錐曲線方程:一般狀況下題目有兩種求法,一種就是直接依據(jù)題目條件來求解(如題目告知你曲線的離心率和過某一個點坐標),另一種就是隱含的告知我們橢圓的定義,然后讓我們?nèi)プ聊テ渲械囊馑?,去寫出曲線的方程,這種問法就比較難點,其實也主要是看我們的基本功底怎么樣,對基礎(chǔ)扎實的同學來說,這種問法也不是問題的。求軌跡方程:這種問題需要我們首先對要求點的坐標設(shè)出來A(x,y),然后用A點表示出題目中某一已知點B的`坐標,然后用表示出來的點坐標代入點B的軌跡方程中,這樣就可以求出A點的軌跡方程了,一般求出來都是圓錐曲線方程,假如不是,你就可能錯了。直線與圓錐曲線問題:三個步驟你還知道嗎(一設(shè)、二代,三韋達)。
先做完這個三個步驟,然后看題目給了我們什么條件,然后對條件進行化簡(一般的條件都是跟向量呀,斜率呀什么的聯(lián)系起來,盼望大家留意點),在化簡的過程中我們需要代韋達進去運算,假如我們在運算的過程中遇到了,肯定要記得應用直線方程將表示出來,然后依據(jù)韋達化簡到最終結(jié)果。最終看題目問我們什么,假如問定值,你還知道怎么做么,不知道的就如今來問我,假如問我們范圍,你還知道有一個東西么(),假如問直線方程,你求出來的直線斜率有兩個,還知道怎么做么,假如要想舍去其中一個,你還記得一個東西么()。同時假如你是一個追求完善的人,我盼望你在做題的時候考慮到直線斜率存在與否的問題,假如你覺得你心胸開闊,那點分數(shù)我不要了,我考慮斜率存不存在的問題,那么我就說你牛!!
個人理解的話,圓錐曲線都不是很難的,就是計算量比較冗雜了一點,但是只要我們專心、用心點,都是可以做出來的,不信你漸漸的去嘗試看看!
高中數(shù)學大題解題技巧:函數(shù)導數(shù)
考點:這種類型的題主要是考大家對導數(shù)公式的應用,導數(shù)的含義,明確導數(shù)可以用來干什么,假如你都不知道導數(shù)可以用來干什么,
你還談什么做題呢。在導數(shù)這塊,我是盼望大家都能盡量的多拿一些分數(shù),由于其難度不是很大,主要你專心去學習了,記住方法了,這個分數(shù)對我們來說都是可以小菜一碟的。題型:最值、單調(diào)性(極值)、未知數(shù)的取值范圍(不等式)、未知數(shù)的取值范圍(交點或者零點)解題思路:
最值、單調(diào)性(極值):首先對原函數(shù)求導,然后令導函數(shù)為零求出極值點,然后畫出表格推斷出在各個區(qū)間的單調(diào)性,最終得出結(jié)論。未知數(shù)的取值范圍(不等式):其實它就是一種一種變相的求最值問題,不知道大家還記得么,記住我講課的表情,未知數(shù)放在一邊,把已知的數(shù)放在另外一邊,求出相應的最值,咱們就成功了,這個種看起來很冗雜,其實很簡潔,你說呢。未知數(shù)的取值范圍(交點或者零點):這種要是沒有把握方法的人,覺得:哇,怎么就那么難呀,其實不然,很簡潔的,只是各位你要明確這種題的解題思路哈。首先還是需要我們把要求的未知數(shù)放在一邊,把知道的數(shù)放在一邊去,這樣去求出已知數(shù)的最值,然后簡潔的畫一個圖形我們就可以分析出未知數(shù)的取值范圍了,說起來也挺簡潔的,假如有什么不了解的,可以立刻問我,不要留下圓滿。
高中數(shù)學大題解題技巧:數(shù)列題
考點:對于數(shù)列,我對大家的要求不是很高,我只是盼望大家能盡自己的所能,盡量的去多拿分數(shù),假如要是有人能全部做對,我也替你興奮,這類題型,主要是考大家對等比等差數(shù)列的理解,包括通項與求和,難度還是有的,其實你要是留意生活的話,這類題還是不是我們想象中那么困難哈。
題型:一般分為證明和計算(包括通項公式、求和、比較大小),解題思路:
證明:就是要求我們證明一個數(shù)列是等比數(shù)列后還是等差數(shù)列,這種題的做法有兩種,一種是用,或者,我們就可以證明其為一個等差數(shù)列或者等比數(shù)列。另一種方法就是應用等差中項或者等比中項來證明數(shù)列。計算(通項公式):一般這個題都還是比較簡潔的,這類型的題,我只要求大家能把握其中題目表達式的關(guān)鍵字眼(如消失要用什么方法,假如消失要用什么方法,假如消失假如消失),我信任通項公式對大家來說應當是到達駕輕就熟的地步了,盼望大家能把握這么簡單的分數(shù)。
求和:這種題對文科生來說,應當知道我要說什么了吧,王福叉數(shù)列(等比等差數(shù)列)呀!!,三個步驟:乘公比,錯位相減,化系數(shù)為一。光是記住步驟沒有用的,同時我也盼望同學們不要眼高手低,不要以為很簡潔的,其實真正能算正確的不肯定那么簡單的,所以我還是盼望大家多加練習,親自操作一下。對理科生來說,也要留意這樣的數(shù)列求和,同時還要把握一種數(shù)列求和,就是這個數(shù)列求和是將其中的一個等差或等比數(shù)列根據(jù)肯定的挨次抽調(diào)了一部分數(shù)列,然后構(gòu)成一個新的數(shù)列求和,還有就是要留意了假如題目里
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年喀喇沁左翼蒙古族自治縣幼兒園教師招教考試備考題庫含答案解析(必刷)
- 2024年長春電子科技學院馬克思主義基本原理概論期末考試題附答案解析(奪冠)
- 2025年浙江農(nóng)林大學暨陽學院馬克思主義基本原理概論期末考試模擬題含答案解析(必刷)
- 2025年重慶醫(yī)藥高等專科學校馬克思主義基本原理概論期末考試模擬題及答案解析(奪冠)
- 2025年劍閣縣幼兒園教師招教考試備考題庫附答案解析
- 制藥企業(yè)年度培訓計劃
- 司機安全管理培訓
- 制度培訓演講串詞
- 口腔醫(yī)學知識宣講
- 《我變成了一棵樹》課件板書
- 2026屆南通市高二數(shù)學第一學期期末統(tǒng)考試題含解析
- 寫字樓保潔培訓課件
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫有完整答案詳解
- 計量宣貫培訓制度
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫有答案詳解
- 《老年服務禮儀與溝通技巧》-《老年服務禮儀與溝通技巧》-老年服務禮儀與溝通技巧
- 2026.05.01施行的中華人民共和國漁業(yè)法(2025修訂)課件
- 原始股認購協(xié)議書
- 嚴肅財經(jīng)紀律培訓班課件
- 上海市復旦大學附中2026屆數(shù)學高一上期末質(zhì)量檢測試題含解析
- 企業(yè)員工食堂營養(yǎng)搭配方案
評論
0/150
提交評論