高考數(shù)學(xué)一輪復(fù)習(xí)講義微專題20一元不等式的證明(含詳解)_第1頁(yè)
高考數(shù)學(xué)一輪復(fù)習(xí)講義微專題20一元不等式的證明(含詳解)_第2頁(yè)
高考數(shù)學(xué)一輪復(fù)習(xí)講義微專題20一元不等式的證明(含詳解)_第3頁(yè)
高考數(shù)學(xué)一輪復(fù)習(xí)講義微專題20一元不等式的證明(含詳解)_第4頁(yè)
高考數(shù)學(xué)一輪復(fù)習(xí)講義微專題20一元不等式的證明(含詳解)_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE1-微專題20一元不等式的證明利用函數(shù)性質(zhì)與最值證明一元不等式是導(dǎo)數(shù)綜合題常涉及的一類問(wèn)題,考察學(xué)生構(gòu)造函數(shù)選擇函數(shù)的能力,體現(xiàn)了函數(shù)最值的一個(gè)作用——每一個(gè)函數(shù)的最值帶來(lái)一個(gè)恒成立的不等式。此外所證明的不等式也有可能對(duì)后一問(wèn)的解決提供幫助,處于承上啟下的位置。一、基礎(chǔ)知識(shí):1、證明方法的理論基礎(chǔ)(1)若要證SKIPIF1<0(SKIPIF1<0為常數(shù))恒成立,則只需證明:SKIPIF1<0,進(jìn)而將不等式的證明轉(zhuǎn)化為求函數(shù)的最值(2)已知SKIPIF1<0的公共定義域?yàn)镾KIPIF1<0,若SKIPIF1<0,則SKIPIF1<0證明:對(duì)任意的SKIPIF1<0,有SKIPIF1<0SKIPIF1<0由不等式的傳遞性可得:SKIPIF1<0,即SKIPIF1<02、證明一元不等式主要的方法有兩個(gè):第一個(gè)方法是將含SKIPIF1<0的項(xiàng)或所有項(xiàng)均挪至不等號(hào)的一側(cè),將一側(cè)的解析式構(gòu)造為函數(shù),通過(guò)分析函數(shù)的單調(diào)性得到最值,從而進(jìn)行證明,其優(yōu)點(diǎn)在于目的明確,構(gòu)造方法簡(jiǎn)單,但對(duì)于移項(xiàng)后較復(fù)雜的解析式則很難分析出單調(diào)性第二個(gè)方法是利用不等式性質(zhì)對(duì)所證不等式進(jìn)行等價(jià)變形,轉(zhuǎn)化成為SKIPIF1<0的形式,若能證明SKIPIF1<0,即可得:SKIPIF1<0,本方法的優(yōu)點(diǎn)在于對(duì)SKIPIF1<0的項(xiàng)進(jìn)行分割變形,可將較復(fù)雜的解析式拆成兩個(gè)簡(jiǎn)單的解析式。但缺點(diǎn)是局限性較強(qiáng),如果SKIPIF1<0與SKIPIF1<0不滿足SKIPIF1<0,則無(wú)法證明SKIPIF1<0。所以用此類方法解題的情況不多,但是在第一個(gè)方法失效的時(shí)候可以考慮嘗試此法。3、在構(gòu)造函數(shù)時(shí)把握一個(gè)原則:以能夠分析導(dǎo)函數(shù)的符號(hào)為準(zhǔn)則。4、若在證明SKIPIF1<0中,解析式SKIPIF1<0可分解為幾個(gè)因式的乘積,則可對(duì)每個(gè)因式的符號(hào)進(jìn)行討論,進(jìn)而簡(jiǎn)化所構(gòu)造函數(shù)的復(fù)雜度。5、合理的利用換元簡(jiǎn)化所分析的解析式。6、判斷解析式符號(hào)的方法:(1)對(duì)解析式進(jìn)行因式分解,將復(fù)雜的式子拆分為一個(gè)個(gè)簡(jiǎn)單的式子,判斷出每個(gè)式子的符號(hào)即可得到解析式的符號(hào)(2)將解析式視為一個(gè)函數(shù),利用其零點(diǎn)(可猜出)與單調(diào)性(利用導(dǎo)數(shù))可判斷其符號(hào)(3)將解析式中的項(xiàng)合理分組,達(dá)到分成若干正項(xiàng)的和或者若干負(fù)項(xiàng)的和的結(jié)果,進(jìn)而判斷出解析式符號(hào)二、典型例題:例1:求證:SKIPIF1<0思路:移項(xiàng)構(gòu)造函數(shù)求解即可證明:所證不等式等價(jià)于:SKIPIF1<0令SKIPIF1<0則只需證明:SKIPIF1<0SKIPIF1<0令SKIPIF1<0解得:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0↗↘SKIPIF1<0SKIPIF1<0即所證不等式成立小煉有話說(shuō):(1)此題的解法為證明一元不等式的基本方法,即將含SKIPIF1<0的項(xiàng)移至不等號(hào)的一側(cè),構(gòu)造函數(shù)解決。(2)一些常見(jiàn)不等關(guān)系可記下來(lái)以備使用:①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0例2:設(shè)函數(shù)SKIPIF1<0,證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0思路:本題依然考慮構(gòu)造函數(shù)解決不等式,但如果僅僅是移項(xiàng),則所證不等式為SKIPIF1<0,令SKIPIF1<0,其導(dǎo)函數(shù)比較復(fù)雜(也可解決此題),所以考慮先對(duì)不等式進(jìn)行等價(jià)變形,轉(zhuǎn)變?yōu)樾问捷^為簡(jiǎn)單的不等式,再構(gòu)造函數(shù)進(jìn)行證明證明:SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以所證不等式等價(jià)于SKIPIF1<0設(shè)SKIPIF1<0SKIPIF1<0只需證SKIPIF1<0即可SKIPIF1<0令SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增SKIPIF1<0SKIPIF1<0故不等式得證小煉有話說(shuō):本題在證明時(shí)采取先化簡(jiǎn)再證明的策略,這也是我們解決數(shù)學(xué)問(wèn)題常用的方法之一,先把問(wèn)題簡(jiǎn)單化再進(jìn)行處理。在利用導(dǎo)數(shù)證明不等式的問(wèn)題中,所謂的“簡(jiǎn)化”的標(biāo)準(zhǔn)就是構(gòu)造的函數(shù)是否易于分析單調(diào)性。例3:已知函數(shù)SKIPIF1<0,證明:SKIPIF1<0思路:若化簡(jiǎn)不等式左邊,則所證不等式等價(jià)于SKIPIF1<0,若將左邊構(gòu)造為函數(shù),則函數(shù)的單調(diào)性難于分析,此法不可取??紤]原不等式為乘積式,且與0進(jìn)行比較,所以考慮也可分別判斷各因式符號(hào),只需讓SKIPIF1<0與SKIPIF1<0同號(hào)即可。而SKIPIF1<0的正負(fù)一眼便可得出,SKIPIF1<0的符號(hào)也不難分析,故采取分別判斷符號(hào)的方法解決。解:SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增SKIPIF1<0SKIPIF1<0為增函數(shù)SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0綜上所述,SKIPIF1<0成立小煉有話說(shuō):與0比較大小也可看做是判斷一側(cè)式子的符號(hào),當(dāng)不等式的一側(cè)可化為幾個(gè)因式的乘積時(shí),可分別判斷每一個(gè)因式的符號(hào)(判斷相對(duì)簡(jiǎn)單),再?zèng)Q定乘積的符號(hào)。例4:已知SKIPIF1<0,其中常數(shù)SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的極值(2)求證:SKIPIF1<0解:(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增SKIPIF1<0SKIPIF1<0的極小值為SKIPIF1<0,無(wú)極大值(2)思路:本題如果直接構(gòu)將左側(cè)構(gòu)造函數(shù),則導(dǎo)數(shù)過(guò)于復(fù)雜,不易進(jìn)行分析,所以考慮將所證不等式進(jìn)行變形成“SKIPIF1<0”的形式。由第(1)問(wèn)可得:SKIPIF1<0,即SKIPIF1<0,則所證不等式兩邊同時(shí)除以SKIPIF1<0,即證:SKIPIF1<0,而SKIPIF1<0,所以只需構(gòu)造函數(shù)證明SKIPIF1<0即可解:由(1)得SKIPIF1<0所證不等式:SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0SKIPIF1<0令SKIPIF1<0可解得:SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0例5:已知SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0在SKIPIF1<0的最值(2)求證:SKIPIF1<0,SKIPIF1<0解:(1)SKIPIF1<0SKIPIF1<0的單調(diào)區(qū)間為SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0↘↗SKIPIF1<0①SKIPIF1<0SKIPIF1<0SKIPIF1<0②SKIPIF1<0時(shí),SKIPIF1<0(2)思路:所證不等式SKIPIF1<0,若都移到左邊構(gòu)造函數(shù),則函數(shù)SKIPIF1<0很難分析單調(diào)性,進(jìn)而無(wú)法求出最值。本題考慮在兩邊分別求出最值,再比較大小即可解:所證不等式等價(jià)于SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0SKIPIF1<0令SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增SKIPIF1<0設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所證不等式成立例6:設(shè)SKIPIF1<0為常數(shù)),曲線SKIPIF1<0與直線SKIPIF1<0在(0,0)點(diǎn)相切.(1)求SKIPIF1<0的值.(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.解:(1)SKIPIF1<0過(guò)SKIPIF1<0點(diǎn)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)思路:所證不等式等價(jià)于SKIPIF1<0,若將SKIPIF1<0的表達(dá)式挪至不等號(hào)一側(cè),則所構(gòu)造的函數(shù)SKIPIF1<0中SKIPIF1<0,SKIPIF1<0求導(dǎo)后結(jié)構(gòu)比較復(fù)雜。觀察到對(duì)數(shù)與根式均含有SKIPIF1<0,進(jìn)而考慮換元SKIPIF1<0化簡(jiǎn)不等式。另一方面,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0是所證SKIPIF1<0的臨界值,進(jìn)而會(huì)對(duì)導(dǎo)數(shù)值的符號(hào)有所影響。解:所證不等式等價(jià)于:SKIPIF1<0令SKIPIF1<0則不等式轉(zhuǎn)化為:SKIPIF1<0SKIPIF1<0(若不去分母,導(dǎo)函數(shù)比較復(fù)雜,不易分析)令SKIPIF1<0SKIPIF1<0只需證SKIPIF1<0即可觀察SKIPIF1<0SKIPIF1<0SKIPIF1<0進(jìn)而考慮SKIPIF1<0的單調(diào)性(盡管SKIPIF1<0復(fù)雜,但有零點(diǎn)在,就能夠幫助繼續(xù)分析,堅(jiān)持往下進(jìn)行)SKIPIF1<0SKIPIF1<0單調(diào)遞增,SKIPIF1<0SKIPIF1<0單調(diào)遞減SKIPIF1<0(SKIPIF1<0是SKIPIF1<0的零點(diǎn),從而引發(fā)連鎖反應(yīng))SKIPIF1<0單調(diào)遞減SKIPIF1<0SKIPIF1<0即所證不等式成立SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0小煉有話說(shuō):本題有以下兩個(gè)亮點(diǎn)(1)利用換元簡(jiǎn)化所證不等式(2)零點(diǎn)的關(guān)鍵作用:對(duì)于化簡(jiǎn)后的函數(shù)SKIPIF1<0而言,形式依然比較復(fù)雜,其導(dǎo)函數(shù)也很難直接因式分解判斷符號(hào),但是由于尋找到SKIPIF1<0這個(gè)零點(diǎn),從而對(duì)導(dǎo)函數(shù)的符號(hào)判斷指引了方向,又因?yàn)榘l(fā)現(xiàn)SKIPIF1<0也是導(dǎo)函數(shù)的零點(diǎn),于是才決定在對(duì)導(dǎo)函數(shù)求一次導(dǎo),在二次導(dǎo)函數(shù)中判斷了符號(hào),進(jìn)而引發(fā)連鎖反應(yīng),最終證明不等式??梢哉f(shuō),本題能堅(jiān)持對(duì)SKIPIF1<0進(jìn)行分析的一個(gè)重要原因就是SKIPIF1<0這個(gè)零點(diǎn)。例7:(,福建,20)已知函數(shù)SKIPIF1<0(1)求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(2)求證:當(dāng)SKIPIF1<0時(shí),存在SKIPIF1<0,使得對(duì)任意的SKIPIF1<0,恒有SKIPIF1<0解:(1)思路:所證不等式為:SKIPIF1<0,只需將含SKIPIF1<0的項(xiàng)移植不等號(hào)一側(cè),構(gòu)造函數(shù)即可證明證明:所證不等式等價(jià)于:SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減SKIPIF1<0時(shí),SKIPIF1<0即SKIPIF1<0得證(2)思路:本題的目標(biāo)是要找到與SKIPIF1<0相關(guān)的SKIPIF1<0,因?yàn)镾KIPIF1<0函數(shù)形式較為簡(jiǎn)單,所以可以考慮移至不等號(hào)一側(cè):SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以只需SKIPIF1<0在SKIPIF1<0單增即可。可對(duì)SKIPIF1<0進(jìn)行SKIPIF1<0和SKIPIF1<0分類討論。證明:SKIPIF1<0設(shè)SKIPIF1<0則SKIPIF1<0且SKIPIF1<0令SKIPIF1<0,即SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0恒成立SKIPIF1<0在SKIPIF1<0單調(diào)遞增SKIPIF1<0SKIPIF1<0可取任意正數(shù)②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0可取任意正數(shù)③當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0,而SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減SKIPIF1<0,均有SKIPIF1<0,只需取SKIPIF1<0即可綜上所述:存在SKIPIF1<0,使得對(duì)任意的SKIPIF1<0,恒有SKIPIF1<0例8:已知函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0,是自然對(duì)數(shù)的底數(shù)),曲線SKIPIF1<0在SKIPIF1<0處的切線與SKIPIF1<0軸平行(1)求SKIPIF1<0的值(2)設(shè)SKIPIF1<0,其中SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù)。證明:對(duì)SKIPIF1<0解:(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0處的切線與SKIPIF1<0軸平行SKIPIF1<0SKIPIF1<0:(2)所證不等式等價(jià)于:SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0SKIPIF1<0令SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減SKIPIF1<0,即SKIPIF1<0若要證SKIPIF1<0,只需證SKIPIF1<0設(shè)SKIPIF1<0SKIPIF1<0,令SKIPIF1<0解得:SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增SKIPIF1<0SKIPIF1<0SKIPIF1<0,即原不等式得證例9:已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0,且SKIPIF1<0,其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù).(1)求SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0時(shí),對(duì)于SKIPIF1<0,求證:SKIPIF1<0.解:(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上為增函數(shù),SKIPIF1<0沒(méi)有極值;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)增,在SKIPIF1<0單調(diào)遞減SKIPIF1<0有極大值SKIPIF1<0,無(wú)極小值(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上為增函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0上為增函數(shù)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由SKIPIF1<0可知SKIPIF1<0SKIPIF1<0SKIPIF1<0即SKIPIF1<0例10:設(shè)函數(shù)SKIPIF1<0.(1)證明:SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;(2)證明:SKIPIF1<0.解:(1)SKIPIF1<0只需證SKIPIF1<0即可令SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增SKIPIF1<0即SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增(2)思路:對(duì)所證不等式SKIPIF1<0,若直接將左側(cè)構(gòu)造函數(shù),則無(wú)法求出單調(diào)區(qū)間和最值。(導(dǎo)函數(shù)中含有SKIPIF1<0無(wú)法進(jìn)一步運(yùn)算),所以考慮將左側(cè)的一部分挪至不等號(hào)另一側(cè),構(gòu)造兩個(gè)函數(shù)進(jìn)行比較。SKIPIF1<0(右邊SKIPIF1<0,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論