版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.同時具有性質:“①最小正周期是;②圖象關于直線對稱;③在上是單調遞增函數(shù)”的一個函數(shù)可以是()A. B.C. D.2.已知均為實數(shù),則“”是“構成等比數(shù)列”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件3.在x軸上的截距為2且傾斜角為135°的直線方程為().A.y=-x+2 B.y=-x-2 C.y=x+2 D.y=x-24.圓關于直線對稱的圓的方程為()A. B.C. D.5.已知函數(shù),若使得在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個,則實數(shù)的取值范圍是()A. B. C. D.6.設復數(shù)(是虛數(shù)單位),則在復平面內,復數(shù)對應的點的坐標為()A. B. C. D.7.已知實數(shù)滿足約束條件,則目標函數(shù)的最小值為()A. B. C.1 D.58.已知向量、的夾角為,,,則()A. B. C. D.9.在中,內角所對的邊分別為,且,,,則()A. B. C. D.10.()A.0 B. C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.已知呈線性相關的變量,之間的關系如下表所示:由表中數(shù)據(jù),得到線性回歸方程,由此估計當為時,的值為______.12.已知函數(shù),的最大值為_____.13.一個公司共有240名員工,下設一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是.14.設公比為q(q>0)的等比數(shù)列{an}的前n項和為{Sn}.若,,則q=______________.15.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個內角,使得;②存在某鈍角,有;③若,則的最小角小于.16.已知函數(shù)分別由下表給出:123211123321則當時,_____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中(底面為正三角形),平面,,,,是邊的中點.(1)證明:平面平面.(2)求點到平面的距離.18.已知直線經(jīng)過兩條直線:和:的交點,直線:;(1)若,求的直線方程;(2)若,求的直線方程.19.中,內角,,所對的邊分別是,,,已知.(1)求角的大小;(2)設,的面積為,求的值.20.已知的三個內角,,的對邊分別為,,,函數(shù),且當時,取最大值.(1)若關于的方程,有解,求實數(shù)的取值范圍;(2)若,且,求的面積.21.已知向量,.(1若,求實數(shù)的值:(2)若,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
利用正弦函數(shù)、余弦函數(shù)的圖象和性質,逐一檢驗,可得結論.【詳解】A,對于y=cos(),它的周期為4π,故不滿足條件.B,對于y=sin(2x),在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上不是單調遞增函數(shù),故不滿足條件.C,對于y=cos(2x),當x時,函數(shù)y,不是最值,故不滿足②它的圖象關于直線x對稱,故不滿足條件.D,對于y=sin(2x),它的周期為π,當x時,函數(shù)y=1,是函數(shù)的最大值,滿足它的圖象關于直線x對稱;且在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上是單調遞增函數(shù),滿足條件.故選:D.【點睛】本題主要考查了正弦函數(shù)、余弦函數(shù)的圖象和性質,屬于中檔題.2、A【解析】解析:若構成等比數(shù)列,則,即是必要條件;但時,不一定有成等比數(shù)列,如,即是不充分條件.應選答案A.3、A【解析】直線的斜率為tan135°=-1,由點斜式求得直線的方程為y=-x+b,將截據(jù)y=0,x=2代入方程,解得b=2,所以,可得y=-x+2,故答案為A4、B【解析】
設圓心關于直線對稱的圓的圓心為,則由,求出的值,可得對稱圓的方程.【詳解】圓的圓心為,半徑,則不妨設圓關于直線對稱的圓的圓心為,半徑為,則由,解得,故所求圓的方程為.故選:B【點睛】本題考查了圓的標準方程、中點坐標公式,需熟記圓的標準形式,屬于基礎題.5、A【解析】
根據(jù)在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個,結合正弦函數(shù)的單調性,即可求得答案.【詳解】,使得在區(qū)間上為增函數(shù)可得當時,滿足整數(shù)至少有,舍去當時,,要使整數(shù)有且僅有一個,須,解得:實數(shù)的取值范圍是.故選:A.【點睛】本題主要考查了根據(jù)三角函數(shù)在某區(qū)間上單調求參數(shù)值,解題關鍵是掌握正弦型三角函數(shù)單調區(qū)間的解法和結合三角函數(shù)圖象求參數(shù)范圍,考查了分析能力和計算能力,屬于難題.6、A【解析】,所以復數(shù)對應的點為,故選A.7、A【解析】
作出不等式組表示的平面區(qū)域,再觀察圖像即可得解.【詳解】解:先作出不等式組表示的平面區(qū)域,如圖所示,由圖可知目標函數(shù)所對應的直線過點時目標函數(shù)取最小值,則,故選:A.【點睛】本題考查了簡單的線性規(guī)劃問題,重點考查了數(shù)形結合的數(shù)學思想方法,屬基礎題.8、B【解析】
利用平面向量數(shù)量積和定義計算出,可得出結果.【詳解】向量、的夾角為,,,則.故選:B.【點睛】本題考查利用平面向量的數(shù)量積來計算平面向量的模,在計算時,一般將模進行平方,利用平面向量數(shù)量積的定義和運算律進行計算,考查計算能力,屬于中等題.9、C【解析】
直接利用余弦定理得到答案.【詳解】故答案選C【點睛】本題考查了余弦定理,意在考查學生計算能力.10、C【解析】試題分析:考點:兩角和正弦公式二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由表格得,又線性回歸直線過點,則,即,令,得.點睛:本題考查線性回歸方程的求法和應用;求線性回歸方程是??嫉幕A題型,其主要考查線性回歸方程一定經(jīng)過樣本點的中心,一定要注意這一點,如本題中利用線性回歸直線過中心點求出的值.12、【解析】
化簡,再利用基本不等式以及輔助角公式求出的最大值,即可得到的最大值【詳解】由題可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值為故答案為【點睛】本題考查三角函數(shù)的最值問題,涉及二倍角公式、基本不等式、輔助角公式等知識點,屬于中檔題。13、5【解析】設一部門抽取的員工人數(shù)為x,則.14、【解析】將,兩個式子全部轉化成用,q表示的式子.即,兩式作差得:,即:,解之得:(舍去)15、①③【解析】
①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個角在內,即可判定;②中,利用兩角和的正切公式,化簡得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運算,得到,由于不共線,得到,再由余弦定理,即可判定.【詳解】由題意,對于①中,在中,當,則,若為直角三角形,則必有一個角在內;若為銳角三角形,則必有一個內角小于等于;若為鈍角三角形,也必有一個角小于內,所以總存在某個內角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【點睛】本題以真假命題為載體,考查了正弦、余弦定理的應用,以及向量的運算及應用,其中解答中熟練應用解三角形的知識和向量的運算進行化簡是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.16、3【解析】
根據(jù)已知,用換元法,從外層求到里層,即可求解.【詳解】令.故答案為:.【點睛】本題考查函數(shù)的表示,考查復合函數(shù)值求參數(shù),換元法是解題的關鍵,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)由,為的中點,可得,又平面,可得,即可證明平面,結合平面,即可證明平面平面;(2)設點到平面的距離為,由等體積法,,即,求解即可.【詳解】(1)證明:,為的中點,.又平面,平面,.又,平面.又平面,平面平面.(2)解:由(1)知,平面,平面,.,,,.設點到平面的距離為,由,得,即,,即點到平面的距離為.【點睛】本題考查了面面垂直的證明,考查了利用等體積法求點到面的距離,考查了學生的空間想象能力,屬于中檔題.18、(1);(2)【解析】
(1)先求出與的交點,再利用兩直線平行斜率相等求直線l(2)利用兩直線垂直斜率乘積等于-1求直線l【詳解】(1)由,得,∴與的交點為.設與直線平行的直線為,則,∴.∴所求直線方程為.(2)設與直線垂直的直線為,則,解得.∴所求直線方程為.【點睛】兩直線平行斜率相等,兩直線垂直斜率乘積等于-1.19、(1)(2)【解析】
(1)利用正弦定理可將已知等式化為,利用兩角和差余弦公式展開整理可求得,根據(jù)可求得結果;(2)利用三角形面積公式可構造方程求出;利用余弦定理可直接求得結果.【詳解】(1)由正弦定理可得:,即(2)設的面積為,則由得:,解得:由余弦定理得:【點睛】本題考查解三角形的相關知識,涉及到正弦定理化簡邊角關系式、三角形面積公式和余弦定理的應用;關鍵是能夠通過正弦定理將邊化角,得到角的一個三角函數(shù)值,從而根據(jù)角的范圍求得結果.20、(1);(2).【解析】
(1)利用兩角和差的正弦公式整理可得:,再利用已知可得:(),結合已知可得:,求得:時,,問題得解.(2)利用正弦定理可得:,結合可得:,對邊利用余弦定理可得:,結合已知整理得:,再利用三角形面積公式計算得解.【詳解】解:(1).因為在處取得最大值,所以,,即.因為,所以,所以.因為,所以所以,因為關于的方程有解,所以的取值范圍為.(2)因為,,由正弦定理,于是.又,所以.由余弦定理得:,整理得:,即,所以,所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年珠海市公安局金灣分局等單位公開招聘公安輔警16人備考題庫及參考答案詳解
- 內江市公安局高新技術開發(fā)區(qū)分局2026年第一次招聘警務輔助人員備考題庫及答案詳解一套
- 2026年浙江大學醫(yī)學院附屬兒童醫(yī)院護理部招聘工作人員備考題庫含答案詳解
- 2026年遂寧市船山區(qū)中醫(yī)醫(yī)院招聘備考題庫及1套參考答案詳解
- 中南林業(yè)科技大學涉外學院2025年人才招聘備考題庫及1套參考答案詳解
- 中國水產(chǎn)科學研究院淡水漁業(yè)研究中心2026年度第一批統(tǒng)一公開招聘備考題庫及完整答案詳解一套
- 寧波市軌道交通物產(chǎn)置業(yè)有限公司下屬項目公司2025年度社會招聘備考題庫有答案詳解
- 中信證券股份有限公司安徽分公司2026年校園招聘備考題庫參考答案詳解
- 2026年重慶市江津區(qū)第二人民醫(yī)院招聘非編人員備考題庫及一套答案詳解
- 中國科學院西北高原生物研究所2026年海內外人才招聘備考題庫及答案詳解參考
- 2023-2024學年北京市海淀區(qū)清華附中八年級(上)期末數(shù)學試卷(含解析)
- 臨終決策中的醫(yī)患共同決策模式
- 2025年貴州省輔警考試真題附答案解析
- 半導體廠務項目工程管理 課件 項目6 凈化室系統(tǒng)的設計與維護
- 防護網(wǎng)施工專項方案
- 2026年及未來5年市場數(shù)據(jù)中國聚甲醛市場運行態(tài)勢及行業(yè)發(fā)展前景預測報告
- TCFLP0030-2021國有企業(yè)網(wǎng)上商城采購交易操作規(guī)范
- 2025廣東省佛山市南海公證處招聘公證員助理4人(公共基礎知識)測試題附答案解析
- (支行)2025年工作總結和2026年工作計劃匯報
- 社會工作本科畢業(yè)論文
- (完整版)第一性原理
評論
0/150
提交評論