版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若實數(shù)a、b滿足條件,則下列不等式一定成立的是A. B. C. D.2.已知的三個內(nèi)角所對的邊分別為,滿足,且,則的形狀為()A.等邊三角形 B.等腰直角三角形C.頂角為的等腰三角形 D.頂角為的等腰三角形3.下列四個結(jié)論正確的是()A.兩條直線都和同一個平面平行,則這兩條直線平行B.兩條直線沒有公共點,則這兩條直線平行C.兩條直線都和第三條直線平行,則這兩條直線平行D.兩條直線都和第三條直線垂直,則這兩條直線平行4.如圖,在等腰梯形中,,于點,則()A. B.C. D.5.在中,若,則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不能確定6.一個三角形的三邊長成等比數(shù)列,公比為,則函數(shù)的值域為()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)7.已知等比數(shù)列,若,則()A. B. C.4 D.8.圓關(guān)于直線對稱,則的值是()A. B. C. D.9.已知為等差數(shù)列,,則的值為()A.3 B.2 C. D.110.在棱長為2的正方體中,是內(nèi)(不含邊界)的一個動點,若,則線段的長的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知不等式x2-x-a>0的解集為x|x>3或12.若正實數(shù)滿足,則的最大值為__________.13.設(shè),則函數(shù)是__________函數(shù)(奇偶性).14.若,其中是第二象限角,則____.15.在我國古代數(shù)學(xué)著作《孫子算經(jīng)》中,卷下第二十六題是:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?滿足題意的答案可以用數(shù)列表示,該數(shù)列的通項公式可以表示為________16.已知的一個內(nèi)角為,并且三邊長構(gòu)成公差為4的等差數(shù)列,則的面積為_______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期;(2)若函數(shù)在的最大值為2,求實數(shù)的值.18.已知平面向量,=(2x+3,-x),(x∈R).(1)若向量與向量垂直,求;(2)若與夾角為銳角,求的取值范圍.19.已知函數(shù),其中常數(shù);(1)令,判定函數(shù)的奇偶性,并說明理由;(2)令,將函數(shù)圖像向右平移個單位,再向上平移1個單位,得到函數(shù)的圖像,對任意,求在區(qū)間上零點個數(shù)的所有可能值;20.如圖,在四棱錐中,平面平面,四邊形為矩形,,點,分別是,的中點.求證:(1)直線∥平面;(2)平面平面.21.如圖,在直三棱柱中,,,分別是,,的中點.(1)求證:平面;(2)若,求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)題意,由不等式的性質(zhì)依次分析選項,綜合即可得答案.【詳解】根據(jù)題意,依次分析選項:對于A、,時,有成立,故A錯誤;對于B、,時,有成立,故B錯誤;對于C、,時,有成立,故C錯誤;對于D、由不等式的性質(zhì)分析可得若,必有成立,則D正確;故選:D.【點睛】本題考查不等式的性質(zhì),對于錯誤的結(jié)論舉出反例即可.2、D【解析】
先利用同角三角函數(shù)基本關(guān)系得,結(jié)合正余弦定理得進而得B,再利用化簡得,得A值進而得C,則形狀可求【詳解】由題即,由正弦定理及余弦定理得即故整理得,故故為頂角為的等腰三角形故選D【點睛】本題考查利用正余弦定理判斷三角形形狀,注意內(nèi)角和定理,三角恒等變換的應(yīng)用,是中檔題3、C【解析】
利用空間直線平面位置關(guān)系對每一個選項分析得解.【詳解】A.兩條直線都和同一個平面平行,則這兩條直線平行、相交或異面,所以該選項錯誤;B.兩條直線沒有公共點,則這兩條直線平行或異面,所以該選項錯誤;C.兩條直線都和第三條直線平行,則這兩條直線平行,是平行公理,所以該選項正確;D.兩條直線都和第三條直線垂直,則這兩條直線平行、相交或異面,所以該選項錯誤.故選:C【點睛】本題主要考查直線平面的位置關(guān)系的判斷,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.4、A【解析】
根據(jù)等腰三角形的性質(zhì)可得是的中點,由平面向量的加法運算法則結(jié)合向量平行的性質(zhì)可得結(jié)果.【詳解】因為,所以是的中點,可得,故選.【點睛】本題主要考查向量的幾何運算以及向量平行的性質(zhì),屬于簡單題.向量的運算有兩種方法,一是幾何運算往往結(jié)合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標(biāo)運算:建立坐標(biāo)系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標(biāo)運算比較簡單)5、A【解析】
由正弦定理得,再由余弦定理求得,得到,即可得到答案.【詳解】因為在中,滿足,由正弦定理知,代入上式得,又由余弦定理可得,因為C是三角形的內(nèi)角,所以,所以為鈍角三角形,故選A.【點睛】本題主要考查了利用正弦定理、余弦定理判定三角形的形狀,其中解答中合理利用正、余弦定理,求得角C的范圍是解答本題的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、D【解析】
由題意先設(shè)出三邊為則由三邊關(guān)系:兩短邊和大于第三邊,分公比大于與公式在小于兩類解出公比的取值范圍,此兩者的并集是函數(shù)的定義域,再由二次函數(shù)的性質(zhì)求出它的值域,選出正確選項.【詳解】解:設(shè)三邊:則由三邊關(guān)系:兩短邊和大于第三邊,即
(1)當(dāng)時,,即,解得;
(2)當(dāng)時,為最大邊,,即,解得,
綜合(1)(2)得:,
又的對稱軸是,故函數(shù)在上是減函數(shù),在上是增函數(shù),
由于時,與時,,
所以函數(shù)的值域為,故選:D.【點睛】本題考查等比數(shù)列的性質(zhì)及二次函數(shù)的值域的求法,解答本題關(guān)鍵是熟練掌握等比數(shù)列的性質(zhì),能利用它建立不等式解出公比的取值范圍得出函數(shù)的定義域,熟練掌握二次函數(shù)的性質(zhì)也很重要,由此類題可以看出,扎實的雙基,嫻熟的基礎(chǔ)知識與公式的記憶是解題的知識保障.7、D【解析】
利用等比數(shù)列的通項公式求得公比,進而求得的值.【詳解】∵,∴.故選:D.【點睛】本題考查等比數(shù)列通項公式,考查運算求解能力,屬于基礎(chǔ)題.8、B【解析】圓關(guān)于直線對稱,所以圓心(1,1)在直線上,得.故選B.9、D【解析】
根據(jù)等差數(shù)列下標(biāo)和性質(zhì),即可求解.【詳解】因為為等差數(shù)列,故解得.故選:D.【點睛】本題考查等差數(shù)列下標(biāo)和性質(zhì),屬基礎(chǔ)題.10、C【解析】
先判斷是正四面體,可得正四面體的棱長為,則的最大值為的長,的最小值是到平面的距離,結(jié)合不在三角形的邊上,計算可得結(jié)果.【詳解】由正方體的性質(zhì)可知,是正四面體,且正四面體的棱長為,在內(nèi),的最大值為,的最小值是到平面的距離,設(shè)在平面的射影為,則為正三角形的中心,,,的最小值為,又因為不在三角形的邊上,所以的范圍是,故選C.【點睛】本題主要考查正方體的性質(zhì)及立體幾何求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義以及平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將立體幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】
由題意可知-2,3為方程x2【詳解】由題意可知-2,3為方程x2-x-a=0的兩根,則-2×3=-a,即故答案為:6【點睛】本題主要考查一元二次不等式的解,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.12、【解析】
可利用基本不等式求的最大值.【詳解】因為都是正數(shù),由基本不等式有,所以即,當(dāng)且僅當(dāng)時等號成立,故的最大值為.【點睛】應(yīng)用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時要關(guān)注取等條件的驗證.13、偶【解析】
利用誘導(dǎo)公式將函數(shù)的解析式進行化簡,即可判斷出函數(shù)的奇偶性.【詳解】,因此,函數(shù)為偶函數(shù).故答案為:偶.【點睛】本題考查三角函數(shù)奇偶性的判斷,解題的關(guān)鍵就是利用誘導(dǎo)公式對三角函數(shù)解析式進行化簡,考查分析問題和解決問題的能力,屬于基礎(chǔ)題.14、【解析】
首先要用誘導(dǎo)公式得到角的正弦值,根據(jù)角是第二象限的角得到角的余弦值,再用誘導(dǎo)公式即可得到結(jié)果.【詳解】解:,又是第二象限角故,故答案為.【點睛】本題考查同角的三角函數(shù)的關(guān)系,本題解題的關(guān)鍵是誘導(dǎo)公式的應(yīng)用,熟練應(yīng)用誘導(dǎo)公式是解決三角函數(shù)問題的必備技能,屬于基礎(chǔ)題.15、【解析】
根據(jù)題意結(jié)合整除中的余數(shù)問題、最小公倍數(shù)問題,進行分析求解即可.【詳解】由題意得:一個數(shù)用3除余2,用7除也余2,所以用3與7的最小公倍數(shù)21除也余2,而用21除余2的數(shù)我們首先就會想到23;23恰好被5除余3,即最小的一個數(shù)為23,同時這個數(shù)相差又是3,5,7的最小公倍數(shù),即,即數(shù)列的通項公式可以表示為,故答案為:.【點睛】本題以數(shù)學(xué)文化為背景,利用數(shù)列中的整除、最小公倍數(shù)進行求解,考查邏輯推理能力和運算求解能力.16、【解析】
試題分析:設(shè)三角形的三邊長為a-4,b=a,c=a+4,(a<b<c),根據(jù)題意可知三邊長構(gòu)成公差為4的等差數(shù)列,可知a+c=2b,C=120,,則由余弦定理,c=a+b-2abcosC,,三邊長為6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考點:本試題主要考查了等差數(shù)列與解三角形的面積的求解的綜合運用.點評:解決該試題的關(guān)鍵是利用余弦定理來求解,以及邊角關(guān)系的運用,正弦面積公式來求解.巧設(shè)變量a-4,a,a+4會簡化運算.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】
(1)根據(jù)二倍角公式進行整理化簡可得,從而可得最小正周期;(2)將通過換元的方式變?yōu)?,;討論對稱軸的具體位置,分別求解最大值,從而建立方程求得的值.【詳解】(1)最小正周期(2)令,則由得①當(dāng),即時當(dāng)時,由,解得(舍去)②當(dāng),即時當(dāng)時,由得,解得或(舍去)③當(dāng),即時當(dāng)時,,由,解得綜上,或【點睛】本題考查正弦型函數(shù)最小正周期的求解、利用二次函數(shù)性質(zhì)求解與三角函數(shù)有關(guān)的值域問題,解題關(guān)鍵是通過換元的方式將所求函數(shù)轉(zhuǎn)化為二次函數(shù)的形式,再利用對稱軸的位置進行討論;易錯點是忽略了換元后自變量的取值范圍.18、(1)10或2;(2).【解析】
(1)由向量與向量垂直,求得或,進而求得的坐標(biāo),利用模的計算公式,即可求解;(2)因為與夾角為銳角,所以,且與不共線,列出不等關(guān)系式,即可求解.【詳解】(1)由題意,平面向量,,由向量與向量垂直,則,解得或,當(dāng)時,,則,所;當(dāng)時,,則,所,(2)因為與夾角為銳角,所以,且與不共線,即且,解得,且,即的取值范圍為.【點睛】本題主要考查了向量的坐標(biāo)運算,以及向量的垂直條件,以及向量的數(shù)量積的應(yīng)用,著重考查了推理運算能力,屬于基礎(chǔ)題.19、(1)非奇非偶,理由見解析;(2)21或20個.【解析】
(1)先利用輔助角公式化簡,再利用和可判斷為非奇非偶函數(shù).(2)求出的解析式后結(jié)合函數(shù)的圖像、周期及給定區(qū)間的特點可判斷在給定的范圍上的零點的個數(shù).【詳解】(1),則,故不是奇函數(shù),又,,故不是偶函數(shù).綜上,為非奇非偶函數(shù).(2),的圖象如圖所示:令,則,則或,,也就是或者,,所以在形如的區(qū)間上恰有兩個不同零點.把區(qū)間分成10個小區(qū)間,它們分別為:,及,根據(jù)函數(shù)的圖像可知:前9個區(qū)間的長度恰為一個周期且左閉右開,故每個區(qū)間恰有兩個不同的零點,最后一個區(qū)間的長度恰為一個周期且為閉區(qū)間,故該區(qū)間上可能有兩個不同的零點或3個不同的零點.故在區(qū)間上可有21個或者20個零點.【點睛】本題考查正弦型函數(shù)的奇偶性、正弦型函數(shù)在給定范圍上的零點個數(shù),注意說明一個函數(shù)不是奇函數(shù)或不是偶函數(shù),可通過反例來說明,而零點個數(shù)的判斷則需綜合考慮給定區(qū)間的長度、開閉情況及函數(shù)的周期.20、(1)見解析(2)見解析【解析】
(1)取中點,連接,,證得,利用線面平行的判定定理,即可證得直線∥平面;(2)利用線面垂直的判定定理,證得,再利用面面垂直的判定定理,即可得到平面平面.【詳解】(1)取中點,連接,.在中,,分別為,中點,則且,又四邊形為矩形,為中點,且,所以,故四邊形為平行四邊形,從而,又,,所以直線.(2)因為矩形,所以,又平面,面,,所以,又,則,又,,所以,又,所以平面平面.【點睛】本題考查線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 快遞物流服務(wù)標(biāo)準(zhǔn)與操作手冊(標(biāo)準(zhǔn)版)
- 化妝基礎(chǔ)培訓(xùn)課件
- 味精制造工節(jié)假日后復(fù)工安全考核試卷含答案
- 磚瓦成型工春節(jié)假期安全告知書
- 混鐵爐工春節(jié)假期安全告知書
- 信息技術(shù)安全管理與風(fēng)險評估指南(標(biāo)準(zhǔn)版)
- 酒店客房用品采購與管理規(guī)范
- 企業(yè)信息化與數(shù)字化戰(zhàn)略(標(biāo)準(zhǔn)版)
- 2025 四年級科學(xué)上冊植物的種子傳播方式課件
- 餐飲服務(wù)單位烹飪操作管理制度
- 汽保設(shè)備租用合同范本
- 丙烷氣體安全技術(shù)操作說明書
- 綠色金融產(chǎn)品手冊
- 華萊士合作入股協(xié)議書
- 員工合作協(xié)議合同范本
- 優(yōu)化營商環(huán)境培訓(xùn)課件
- 專題06相似三角形中的基本模型之半角模型(幾何模型講義)數(shù)學(xué)華東師大版九年級上冊(原卷版)
- 2025比亞迪供應(yīng)商審核自查表
- 水電站項目物資采購管理方案
- 綜合行政執(zhí)法培訓(xùn)
- (正式版)DB3301∕T 0498-2025 《小型水利工程項目劃分管理規(guī)范》
評論
0/150
提交評論