版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
鄰近多目標(biāo)場(chǎng)景下MIMO雷達(dá)檢測(cè)數(shù)據(jù)處理算法研究鄰近多目標(biāo)場(chǎng)景下MIMO雷達(dá)檢測(cè)數(shù)據(jù)處理算法研究
摘要:
MIMO雷達(dá)是一種多輸入多輸出雷達(dá)系統(tǒng),可以利用天線陣列快速獲取地面目標(biāo)信息,并提供較高的分辨率和檢測(cè)性能。然而,在鄰近多目標(biāo)場(chǎng)景下,傳統(tǒng)的MIMO雷達(dá)數(shù)據(jù)處理算法通常存在一些問題,如交叉干擾、信號(hào)混疊等。針對(duì)這些問題,本文提出了一種改進(jìn)的鄰近多目標(biāo)場(chǎng)景下MIMO雷達(dá)數(shù)據(jù)處理算法。首先,使用半監(jiān)督學(xué)習(xí)技術(shù)來減少交叉干擾的影響,并利用最小二乘法進(jìn)行信號(hào)分離。其次,采用弱化總變差(TV)約束的方法來優(yōu)化多目標(biāo)信號(hào)的稀疏表示,并利用非局部均值(NLM)去除信號(hào)混疊。最后,利用仿真實(shí)驗(yàn)和實(shí)測(cè)數(shù)據(jù)進(jìn)行算法測(cè)試,結(jié)果表明,該算法能夠有效地提高鄰近多目標(biāo)場(chǎng)景下MIMO雷達(dá)的檢測(cè)性能。
關(guān)鍵詞:
MIMO雷達(dá)、多目標(biāo)場(chǎng)景、交叉干擾、信號(hào)混疊、稀疏表示。
Abstract:
MIMOradarisamultiple-inputmultiple-outputradarsystemthatcanquicklyacquiregroundtargetinformationusingantennaarrayandprovidehighresolutionanddetectionperformance.However,intheadjacentmultiple-targetscenes,traditionalMIMOradardataprocessingalgorithmsusuallyhavesomeproblems,suchascrossinterferenceandsignalaliasing.Inordertosolvetheseproblems,thispaperproposesanimprovedMIMOradardataprocessingalgorithmforadjacentmultiple-targetscenes.Firstly,semi-supervisedlearningisusedtoreducetheimpactofcrossinterference,andtheleastsquaresmethodisusedtoseparatethesignals.Secondly,thetotalvariation(TV)constraintisweakenedtooptimizethesparserepresentationofmultipletargetsignals,andthenon-localmeans(NLM)methodisusedtoremovesignalaliasing.Finally,simulationexperimentsandactualmeasurementsareusedtotestthealgorithm,andtheresultsshowthattheproposedalgorithmcaneffectivelyimprovethedetectionperformanceofMIMOradarinadjacentmultiple-targetscenes.
Keywords:
MIMOradar,multiple-targetscenes,crossinterference,signalaliasing,sparserepresentationMultiple-targetscenesareacommonoccurrenceinmodernMIMOradarsystems.However,thesescenesposesignificantchallengestosignaldetectionduetothepresenceofcross-interferenceandsignalaliasing.Cross-interferenceariseswhentheechoesfromonetargetinterferewiththeechoesfromanother.Signalaliasing,ontheotherhand,iscausedbyoverlappingofthesignalsfromdifferenttargetsinthefrequencydomain,whichresultsinincorrectlocalizationofthetargets.
Toovercomethesechallenges,weproposeanewalgorithmbasedonsparserepresentationandnon-localmeans.Themainideabehindourapproachistoweakentheinterferencebetweenthetargetsignalsbyexploitingthesparsityofthescene.Specifically,weuseasparserepresentationmodeltoseparatethesignalsfromdifferenttargets,whichallowsustoreducethecross-interference.Thesparsitymodelassumesthatthesignalscanberepresentedasalinearcombinationofasmallnumberofbasisfunctionsordictionaryelements,whichiswell-suitedforMIMOradarsystems.
Inadditiontosparsity-basedprocessing,wealsousethenon-localmeans(NLM)methodtoaddresstheissueofsignalaliasing.TheNLMmethodisapopulardenoisingtechniquethatremovesnoisebyaveragingsimilarpatchesinanimage.Inourcase,weapplytheNLMmethodtotheMIMOradarsignalstoremovethealiasingcausedbyoverlappingofthesignalsfromdifferenttargets.
Toevaluatetheeffectivenessofourproposedalgorithm,weconductedsimulationexperimentsandactualmeasurements.TheresultsshowthatouralgorithmcaneffectivelyimprovethedetectionperformanceofMIMOradarinadjacentmultiple-targetscenes.Specifically,ouralgorithmachievesbettertargetlocalizationandhighersignal-to-interference-plus-noise-ratio(SINR)comparedtoexistingmethods.
Inconclusion,ourproposedalgorithmbasedonsparserepresentationandnon-localmeansisapromisingapproachtoaddressthechallengesofsignaldetectioninmultiple-targetscenesforMIMOradarsystems.OurapproachimprovestheperformanceandreliabilityofMIMOradarsystemsandhaspotentialapplicationsinareassuchassurveillance,mapping,andremotesensingOneareawhereourproposedalgorithmcouldbeparticularlyusefulisdisasterresponse.Insituationssuchasearthquakes,hurricanes,orfloods,traditionaldetectionmethodsmaybeinsufficientinidentifyingpotentialsurvivorsorlocatingburiedvictims.However,MIMOradarsystemsusingourproposedalgorithmcouldimprovethespeedandaccuracyofrescuesbyenablingbettertargetlocalizationandidentificationinthesescenarios.
Additionally,ouralgorithmcouldalsohaveapplicationsinautonomousvehiclesandrobotics.Byimprovingtargetdetectionandlocalizationcapabilities,autonomousvehiclescouldnavigatemoreaccurately,avoidingobstaclesandimprovingsafetyontheroad.Inthefieldofrobotics,ouralgorithmcouldenablebetterperceptionandinteractionwiththeenvironment,allowingrobotstoperformtaskssuchasmappingandexplorationmoreeffectively.
Overall,ourproposedalgorithmbasedonsparserepresentationandnon-localmeanshasthepotentialtogreatlyimprovetheperformanceandreliabilityofMIMOradarsystemsindetectingmultipletargetsincomplexenvironments.Itsapplicationsarewide-ranging,fromdisasterresponseandsurveillancetoautonomousvehiclesandrobotics.Furtherresearchanddevelopmentinthisareacouldleadtosignificantadvancementsintargetdetectionandlocalization,benefitingarangeofindustriesandsocietalneedsSparserepresentationandnon-localmeansalgorithmshavebecomeapromisingsolutionforthedetectionandlocalizationofmultipletargetsincomplexenvironmentsusingMIMOradarsystems.Thistechniquehasshownitspotentialtoimprovethereliabilityandaccuracyoftargetdetectioninavarietyofapplicationsspanningacrossdifferentindustries.
Oneofthemajorbenefitsofthesparserepresentation-basedalgorithmisitsabilitytocapitalizeontheinherentsparsityofthesignaltoaccuratelyidentifyweakandcloselyspacedtargets.Thispropertybecomesparticularlyusefulinenvironmentswheretargetsarecloselylocated,andconventionaltechniquesmaystruggletoresolvethem.Thealgorithmachievesthisbyrepresentingthesignalasalinearcombinationoffewatomsfromapre-defineddictionary.Thesparsecoefficientsarethenestimatedusinganoptimizationmethod,suchasBasisPursuitorOrthogonalMatchingPursuit.ThismethodhasbeenshowntoimprovethedetectionandlocalizationperformanceofMIMOradarsystemsinvariousstudies.
Thenon-localmeansalgorithm,ontheotherhand,exploitstheredundancyofinformationinthereceivedsignaltosuppressnoiseandenhancethesignal-to-noiseratio(SNR).Theapproachreliesontheideathattargetsthatarespatiallyclosewillhavesimilarscatteringcharacteristics.Byexploitingthissimilarity,onecanestimatethesignalatagivenlocationbyaveragingthesignalatotherlocationswithinaspecificrange.Thisaveragingprocesshelpstosuppressrandomnoiseandpreservesignalfeatures,resultinginanimprovementintheSNR.
Thecombinationofthesetwoalgorithmshasshowntoyieldexceptionalresultsindetectingmultipletargetswithhighaccuracy,eveninenvironmentswithahighlevelofnoiseandclutter.Moreover,thealgorithmsrequirelesscomputationtimethantraditionalmethods,whichcanbeadvantageousinreal-timeapplications.Thismakesthemsuitableforawiderangeofapplications,includingsurveillance,disasterresponse,autonomousvehicles,androbotics.
Fordisasterresponseandsurveillanceapplications,theuseofradarsystemsindetectingandlocalizingtargetscanprovecritical.Theabilitytoaccuratelydetectandlocatepeopleorobjectsinadisaster-strickenareacanprovidevaluableinformationtotherescueteams,facilitatingthesearchandrescueprocess.Similarly,insurveillanceapplications,theuseofradarsystemscanhelpindetectingandtrackingintrudersinrestrictedareas,enhancingsecurity.Thesparserepresentationandnon-localmeansalgorithmscanimprovetheperformanceoftheradarsystemsusedintheseapplications,leadingtobetterresults.
Intheautonomousvehicleindustry,robusttargetdetectionandtrackingarecrucialforsafenavigation.Theuseofradarsystemsinautonomousvehiclesforobjectdetectionandlocalizationhasrapidlyincreasedinrecentyears.Thecombinationofthesparserepresentationandnon-localmeansalgorithmscanfurtherenhancetheperformanceofthesesystems,improvingtheirreliabilityandaccuracyindetectingandtrackingobjects,thusleadingtosaferautonomousnavigation.
Intheroboticsindustry,theuseofradarsystemscanenablerobotstooperateincomplexenvironmentswithvaryinglightingconditions.Thecombinationofthesparserepresentationandnon-localmeansalgorithmscanimprovetheperformanceoftheradarsystems,makingtherobotsbetterequippedtodetectandlocalizeobjects,leadingtobetterdecision-makingcapabilities.
Inconclusion,thesparserepresentationandnon-localmeansalgorithmshaveshownthepotentialtogreatlyimprov
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GBT 21526-2008 結(jié)構(gòu)膠粘劑 粘接前金屬和塑料表面處理導(dǎo)則》專題研究報(bào)告
- 《GB 14722-2008組件式髖部、膝部和大腿假肢》專題研究報(bào)告深度
- 《GBT 22133-2008流體流量測(cè)量 流量計(jì)性能表述方法》專題研究報(bào)告
- 《GBT 17587.5-2008滾珠絲杠副 第5部分:軸向額定靜載荷和動(dòng)載荷及使用壽命》專題研究報(bào)告
- 道路安全培訓(xùn)教學(xué)課件
- 道教協(xié)會(huì)安全培訓(xùn)課件
- 道寶當(dāng)眾講話培訓(xùn)
- 2025局部晚期非小細(xì)胞肺癌多學(xué)科管理與治療策略共識(shí)課件
- 云南國(guó)防工業(yè)職業(yè)技術(shù)學(xué)院《機(jī)電一體化技術(shù)(軍工方向)》2024-2025 學(xué)年第一學(xué)期期末試卷(核心專業(yè))
- 達(dá)人培訓(xùn)課件安裝
- 2023-2024學(xué)年北京市海淀區(qū)清華附中八年級(jí)(上)期末數(shù)學(xué)試卷(含解析)
- 臨終決策中的醫(yī)患共同決策模式
- 2026年包頭輕工職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考題庫及答案詳解
- 流感防治知識(shí)培訓(xùn)
- 呼吸內(nèi)科進(jìn)修匯報(bào)課件
- 康復(fù)治療進(jìn)修匯報(bào)
- 牽引供電系統(tǒng)短路計(jì)算-三相對(duì)稱短路計(jì)算(高鐵牽引供電系統(tǒng))
- 離婚協(xié)議書模板(模板)(通用)
- (完整版)第一性原理
- 降低住院患者口服藥缺陷率教學(xué)課件
- 《質(zhì)量管理與控制技術(shù)基礎(chǔ)》第一章 質(zhì)量管理基礎(chǔ)知識(shí)
評(píng)論
0/150
提交評(píng)論