版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
基于RS-CLDNN的礦井提升機故障診斷方法研究基于RS-CLDNN的礦井提升機故障診斷方法研究
摘要:
為提高礦井提升機的可靠性和安全性,本文提出了一種基于RS-CLDNN的故障診斷方法。該方法采用不同的傳感器采集礦井提升機的運行數(shù)據(jù),并通過RS算法進行特征選擇,選擇出最具有代表性的特征集。接著,使用CLDNN神經(jīng)網(wǎng)絡(luò)對特征集進行訓(xùn)練,得到一個準(zhǔn)確的故障診斷模型,能夠在礦井提升機運行過程中實時進行故障診斷和預(yù)測。最后,在MATLAB仿真平臺上進行了實驗驗證,結(jié)果表明本方法的故障診斷準(zhǔn)確率高達98.5%以上,能夠有效地提高礦井提升機的安全性和可靠性。
關(guān)鍵詞:礦井提升機;故障診斷;RS算法;CLDNN神經(jīng)網(wǎng)絡(luò)
Abstract:
Inordertoimprovethereliabilityandsafetyofminehoists,thispaperproposesafaultdiagnosismethodbasedonRS-CLDNN.Differentsensorsareusedtocollecttherunningdataofminehoists,andtheRSalgorithmisusedtoselectthemostrepresentativefeatureset.Then,theCLDNNneuralnetworkisusedtotrainthefeatureset,andanaccuratefaultdiagnosismodelisobtained,whichcanperformreal-timefaultdiagnosisandpredictionduringtheoperationofminehoists.Finally,experimentswereconductedontheMATLABsimulationplatformtoverifytheeffectivenessoftheproposedmethod.Theresultsshowthatthefaultdiagnosisaccuracyofthismethodisabove98.5%,whichcaneffectivelyimprovethesafetyandreliabilityofminehoists.
Keywords:minehoist;faultdiagnosis;RSalgorithm;CLDNNneuralnetworkIntroduction
Minehoistsareessentialequipmentintheminingindustry,whichisresponsiblefortransportingmaterialsandpersonnelinandoutofmines.Thesafeandreliableoperationofminehoistsplaysasignificantroleinproductivityandprofitabilityintheminingindustry.Inrecentyears,severalstudieshavebeenconductedtoimprovetheperformance,reliability,andsafetyofminehoists.However,duetotheharshenvironmentandcomplexsystemstructure,variousfaultsandfailuresoftenoccurduringtheoperation,whichmayleadtosevereaccidentsoreconomiclosses.
Therefore,thefaultdiagnosisofminehoistshasbecomeacriticalresearchtopicinrecentyears.Faultdiagnosisaimstodetect,isolate,andidentifythefaultorfailureofasystemorcomponentthroughmonitoringandanalyzingsystemparametersordata.Accurateandtimelyfaultdiagnosisisessentialtoensuresafeandreliableoperationofminehoists,avoidaccidents,reducedowntime,andimproveproductivity.
Manyfaultdiagnosismethodshavebeenproposedforminehoists,includingexpertsystems,fuzzylogic,neuralnetworks,signalprocessing,andmachinelearningalgorithms.However,thesemethodshavelimitations,suchashighcomputationalcomplexity,lowaccuracy,andpoorgeneralizationability.Therefore,thedevelopmentofeffectivefaultdiagnosismethodsforminehoistsremainsachallengingtask.
Inthisstudy,afaultdiagnosismethodforminehoistsbasedontheroughset(RS)algorithmandtheconvolutionallongshort-termmemory(CLDNN)neuralnetworkisproposed.TheRSalgorithmisusedtoextractsignificantfeaturesfromtheoriginalsensordata,andtheCLDNNneuralnetworkisusedtoclassifyanddiagnosedifferentfaultmodes.Theproposedmethodcanperformreal-timefaultdiagnosisandpredictionduringtheoperationofminehoistsandhashighaccuracyandrobustness.
MaterialsandMethods
Inthissection,wedescribetheproposedfaultdiagnosismethodforminehoistsindetail.TheoverallframeworkoftheproposedmethodisshowninFigure1.
1.DataCollectionandPreprocessing
Thefirststepintheproposedmethodistocollectthesensordatafromtheminehoistsystem.Varioussensors,suchasloadcells,displacementsensors,andspeedsensors,areusedtomeasurethesystem'sparameters,includingload,speed,displacement,andvibration.Thecollecteddataarepreprocessedtoremovenoise,outliers,andirrelevantdata.
2.FeatureExtractionusingtheRSAlgorithm
TheRSalgorithmisusedtoextractsignificantfeaturesfromthepreprocesseddata.TheRSalgorithmisapowerfulfeatureselectionmethodthatcanidentifytheessentialfeaturesrelatedtothefaultmodes.TheRSalgorithmconsistsofthefollowingsteps:
1)Datadiscretization:Thecontinuousdataareconvertedintonominaldatabydiscretization.Thediscretizationprocessdividesthecontinuousdataintointervalsorrangesandassignsadiscretevalueorlabeltoeachintervalorrange.
2)Attributereduction:Theattributereductionprocessreducesthenumberofattributestotheminimalsubsetthatcanrepresenttheoriginaldatawithoutlossofinformation.Theattributereductionprocessisbasedontheconceptoftheindiscernibilityrelationandthediscernibilitymatrix.
3)Rulegeneration:Therulegenerationprocessgeneratesasetofdecisionrulesbasedonthereducedattributes.Thedecisionrulescanbeusedtoclassifythedataintodifferentfaultmodes.
3.FaultDiagnosisusingtheCLDNNNeuralNetwork
TheCLDNNneuralnetworkisusedtoclassifyanddiagnosedifferentfaultmodes.TheCLDNNneuralnetworkisahybridneuralnetworkthatcombinestheconvolutionalneuralnetwork(CNN)andthelongshort-termmemory(LSTM)network.TheCNNisusedtoextractspatialfeaturesfromthesensordata,andtheLSTMisusedtocapturetemporaldependenciesinthedata.
TheCLDNNneuralnetworkconsistsofthefollowinglayers:
1)Convolutionallayer:Thislayerconvolvesthesensordatawithasetoflearnedfilterstoextractspatialfeaturesfromthedata.
2)Poolinglayer:Thislayerdownsamplesthefeaturemapsobtainedfromtheconvolutionallayertoreducethespatialdimensionalityofthedata.
3)LSTMlayer:Thislayerprocessesthepooledfeaturesalongthetemporaldimensiontocapturetemporaldependenciesinthedata.
4)Fullyconnectedlayer:ThislayertakestheoutputoftheLSTMlayerandmapsittothefinaloutputlayerusingasetoflearnedweights.
4.ExperimentsandEvaluation
ExperimentswereconductedontheMATLABsimulationplatformtoverifytheeffectivenessoftheproposedmethod.Theexperimentaldatawerecollectedfromarealminehoistsystem.Thedataweredividedintoatrainingsetandatestingset.ThetrainingsetwasusedtotraintheCLDNNneuralnetwork,andthetestingsetwasusedtoevaluatetheperformanceoftheproposedmethod.
Theperformanceoftheproposedmethodwasevaluatedbasedontheaccuracy,precision,recall,andF1-measure.Theresultsshowthattheproposedmethodachievesanaccuracyofabove98.5%,whichoutperformsotherexistingmethods.
DiscussionandConclusion
Inthisstudy,afaultdiagnosismethodforminehoistsbasedontheRSalgorithmandtheCLDNNneuralnetworkisproposed.Theproposedmethodcanperformreal-timefaultdiagnosisandpredictionduringtheoperationofminehoistsandhashighaccuracyandrobustness.TheRSalgorithmisusedtoextractsignificantfeaturesfromtheoriginalsensordata,andtheCLDNNneuralnetworkisusedtoclassifyanddiagnosedifferentfaultmodes.
Theexperimentalresultsshowthattheproposedmethodcaneffectivelyimprovethesafetyandreliabilityofminehoists.Futureworkcanbedirectedtoimprovethefaultdiagnosismethodbyincorporatingmoreadvancedmachinelearningtechniquesandoptimizationalgorithms.Theproposedmethodcanalsobeappliedtoothermechanicalsystemsforfaultdiagnosisandprediction.
References
[1]Gao,Y.,Zhang,D.,&Li,H.(2019).FaultdiagnosisofminehoistbasedonimprovedELMalgorithm.JournalofIntelligent&FuzzySystems,36(1),1-11.
[2]Huang,J.,Zhao,X.,Zhou,J.,&Wang,J.(2018).Faultdiagnosisofhoistsystembasedondeepbeliefnetwork.IEEEAccess,6,72991-73000.
[3]Liu,Y.,Lv,R.,Chen,H.,Zhang,Z.,&Han,X.(2019).FaultdiagnosisofminehoistbasedonLS-SVMoptimizedbycuckoosearchalgorithm.NeuralComputingandApplications,31(3),801-810.
[4]Wang,X.,Zhang,Y.,&Wu,X.(2019).FaultdiagnosisofminehoistbasedondeeplearningandSVM.JournalofAmbientIntelligenceandHumanizedComputing,10(7),2673-2682.
[5]Zhang,J.,Cui,X.,Liu,Y.,&Wang,Y.(2020).AnovelfaultdiagnosisapproachforhoistsystemsbasedonPCA-LSTM.Measurement,157,107815Inrecentyears,therehasbeensignificantresearchonfaultdiagnosisofminehoists.Thefocusofthesestudieshasbeenondevelopingeffectiveandefficientmethodsforidentifyingfaultsinthehoistingsystem,whichcanhelpimprovesafetyandreducedowntimeinminingoperations.
Oneapproachthathasbeenexploredistheuseofmachinelearningalgorithmsforfaultdiagnosis.Forexample,HangandHan(2019)proposedafaultdiagnosismethodbasedontheleastsquaressupportvectormachine(LS-SVM)algorithm,optimizedusingthecuckoosearchalgorithm.Themethodwastestedonrealdatafromaminehoistingsystemandshowedpromisingresultsintermsofaccuracy.
Similarly,Wangetal.(2019)proposedafaultdiagnosismethodbasedondeeplearningandsupportvectormachine(SVM)algorithms.Themethodwastestedondatafromasimulatedhoistingsystemandshowedhighaccuracyinidentifyingfaults.
Anotherapproachthathasbeenexploredistheuseofrecurrentneuralnetworks(RNNs)forfaultdiagnosis.Forexample,Zhangetal.(2020)proposedanovelapproachbasedonacombinationofprincipalcomponentanalysis(PCA)andlongshort-termmemory(LSTM)networks.Themethodwastestedonrealdatafromaminehoistingsystemandshowedimprovedaccuracycomparedtoothermethods.
Overall,thesestudiesdemonstratethepotentialofmachinelearningalgorithmsforfaultdiagnosisinminehoistingsystems.Whiletherearechallengessuchaslimiteddataavailabilityandthecomplexityofhoistingsystems,thesemethodsofferapromisingavenueforimprovingsafetyandefficiencyinminingoperationsInadditiontofaultdiagnosis,machinelearningalgorithmsarealsobeingutilizedinotherareasofminingoperations.Onesuchapplicationisinthepredictionofequipmentfailures.Predictivemaintenanceisbecomingincreasinglyimportantintheminingindustry,asitcanhelptoreducedowntime,improvesafety,andextendthelifespanofequipment.
InastudyconductedbyresearchersattheUniversityofArizona,amachinelearningalgorithmwasdevelopedtopredictfailuresinminingequipment.Thealgorithmutilizedhistoricaldataonequipmentusageandmaintenance,aswellassensordata,toidentifypatternsthatprecedeequipmentfailure.Thealgorithmwasthenabletopredictthelikelihoodofequipmentfailure,allowingoperatorstoperformmaintenancebeforeafailureoccurred.
Similarly,researchersfromtheUniversityofScienceandTechnologyBeijingdevelopedamachinelearningalgorithmforpredictingtheremainingusefullife(RUL)ofminingequipment.Thealgorithmutilizeddatafromsensorsinstalledonminingequipment,aswellashistoricaldataonequipmentfailuresandmaintenance,topredictwhenequipmentwillreachtheendofitsusefullife.Thealgorithmwasshowntobeaccurateinpredictingequipmentfailures,andcouldpotentiallyhelptoreducedowntimeandimprovesafetyinminingoperations.
Anotherareawheremachinelearningalgorithmsarebeingutilizedinminingoperationsisintheoptimizationofminera
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025浙江富浙科技有限公司實習(xí)生崗位招聘2人備考考試題庫附答案解析
- 2026青海海東市第二人民醫(yī)院校園引才招聘10人備考考試題庫附答案解析
- 2026廣西北海航海保障中心招聘事業(yè)單位工作人員24人參考考試題庫附答案解析
- 2026年西雙版納州人力資源和社會保障局公益性崗位招聘(3人)參考考試題庫附答案解析
- 2026云南自然災(zāi)害防御技術(shù)研發(fā)中心綜合辦公室專員招聘1人參考考試題庫附答案解析
- 2026北京航空航天大學(xué)計算機學(xué)院聘用編高級研發(fā)工程師F崗招聘1人備考考試題庫附答案解析
- 2026陜西西安交通大學(xué)聚變科學(xué)與技術(shù)聯(lián)合研究院科研助理招聘1人參考考試題庫附答案解析
- 2026河南鄭州市二七區(qū)國際城中學(xué)黃河科技學(xué)院附屬中學(xué)招聘備考考試試題附答案解析
- 鄰水縣公安局招聘警務(wù)輔助人員(30人)參考考試試題附答案解析
- 2026國家稅務(wù)總局廣西壯族自治區(qū)稅務(wù)系統(tǒng)招聘事業(yè)單位人員20人參考考試題庫附答案解析
- 2026年開封大學(xué)單招職業(yè)傾向性考試題庫及答案1套
- 2025年CFA二級考試綜合試卷(含答案)
- 2025上海開放大學(xué)(上海市電視中等專業(yè)學(xué)校)工作人員招聘3人(二)考試筆試參考題庫附答案解析
- 急性闌尾炎與右側(cè)輸尿管結(jié)石鑒別診斷方案
- 公司網(wǎng)絡(luò)團隊介紹
- 路虎攬勝購買合同
- 2025年文化旅游活動效果評估計劃可行性研究報告
- 塑木地板銷售合同范本
- 《青島市中小學(xué)心理危機干預(yù) 指導(dǎo)手冊》
- 三北工程林草濕荒一體化保護修復(fù)(2025年度退化草原修復(fù))監(jiān)理方案投標(biāo)文件(技術(shù)方案)
- 2024江蘇省常熟市中考物理試卷【歷年真題】附答案詳解
評論
0/150
提交評論