版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.三角形的三條邊長是連續(xù)的三個自然數(shù),且最大角是最小角的2倍,則該三角形的最大邊長為()A.4 B.5 C.6 D.72.若,且,恒成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.如圖,設(shè)是正六邊形的中心,則與相等的向量為()A. B. C. D.4.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項和()A.31 B.21 C.15 D.115.定義在上的函數(shù)若關(guān)于的方程(其中)有個不同的實(shí)根,,…,,則()A. B. C. D.6.已知實(shí)數(shù)x,y滿足約束條件,那么目標(biāo)函數(shù)的最大值是()A.0 B.1 C. D.107.設(shè)等比數(shù)列滿足,,則()A.8 B.16 C.24 D.488.由小到大排列的一組數(shù)據(jù),,,,,其中每個數(shù)據(jù)都小于,那么對于樣本,,,,,的中位數(shù)可以表示為()A. B. C. D.9.幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是A.440 B.330C.220 D.11010.某同學(xué)5天上學(xué)途中所花的時間(單位:分鐘)分別為12,8,10,9,11,則這組數(shù)據(jù)的方差為()A.4 B.2 C.9 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)是定義域?yàn)镽的奇函數(shù),當(dāng)時,則的表達(dá)式為________.12.______.13.在數(shù)列中,已知,,記為數(shù)列的前項和,則_________.14.函數(shù)f(x)=coscos的最小正周期為________.15.若向量與平行.則__.16.設(shè)等比數(shù)列滿足a1+a3=10,a2+a4=5,則a1a2…an的最大值為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,在直三棱柱中,,平面,D為AC的中點(diǎn).(1)求證:平面;(2)求證:平面;(3)設(shè)E是上一點(diǎn),試確定E的位置使平面平面BDE,并說明理由.18.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).(1)求證:BD⊥平面PAC;(2)若∠ABC=60°,求證:平面PAB⊥平面PAE;19.已知夾角為,且,,求:(1);(2)與的夾角.20.設(shè){an}是等差數(shù)列,a1=–10,且a2+10,a3+8,a4+6成等比數(shù)列.(Ⅰ)求{an}的通項公式;(Ⅱ)記{an}的前n項和為Sn,求Sn的最小值.21.已知數(shù)列滿足:(1)設(shè)數(shù)列滿足,求的前項和:(2)證明數(shù)列是等差數(shù)列,并求其通項公式;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)三角形滿足的兩個條件,設(shè)出三邊長分別為,三個角分別為,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡后,表示出,然后利用余弦定理得到,將表示出的代入,整理后得到關(guān)于的方程,求出方程的解得到的值,【詳解】解:設(shè)三角形三邊是連續(xù)的三個自然,三個角分別為,
由正弦定理可得:,
,
再由余弦定理可得:,
化簡可得:,解得:或(舍去),
∴,故三角形的三邊長分別為:,故選:C.【點(diǎn)睛】此題考查了正弦、余弦定理,以及二倍角的正弦函數(shù)公式,正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.2、A【解析】
將代數(shù)式與相乘,展開式利用基本不等式求出的最小值,將問題轉(zhuǎn)化為解不等式,解出即可.【詳解】由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,所以,的最小值為.由題意可得,即,解得.因此,實(shí)數(shù)的取值范圍是,故選A.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,考查不等式恒成立問題以及一元二次不等式的解法,對于不等式恒成立問題,常轉(zhuǎn)化為最值來處理,考查計算能力,屬于中等題.3、D【解析】
容易看出,四邊形是平行四邊形,從而得出.【詳解】根據(jù)圖形看出,四邊形是平行四邊形故選:【點(diǎn)睛】本題考查相等向量概念辨析,屬于基礎(chǔ)題.4、A【解析】
由條件求出數(shù)列的公比.再利用等比數(shù)列的前項求和公式即可得出.【詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【點(diǎn)睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.5、C【解析】畫出函數(shù)的圖象,如圖,由圖可知函數(shù)的圖象關(guān)于對稱,解方程方程,得或,時有三個根,,時有兩個根,所以關(guān)于的方程共有五個根,,,故選C.【方法點(diǎn)睛】本題主要考查函數(shù)的圖象與性質(zhì)以及函數(shù)與方程思想、數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,.函數(shù)圖象是函數(shù)的一種表達(dá)形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應(yīng)用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì).6、D【解析】
根據(jù)約束條件,畫出可行域,再平移目標(biāo)函數(shù)所在的直線,找到最優(yōu)點(diǎn),將最優(yōu)點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)求最值.【詳解】畫出可行域(如圖),平移直線,當(dāng)目標(biāo)直線過點(diǎn)時,目標(biāo)函數(shù)取得最大值,.故選:D【點(diǎn)睛】本題主要考查線性規(guī)劃求最值問題,還考查了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.7、A【解析】
利用等比數(shù)列的通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則,解得所以.故選:A【點(diǎn)睛】本題考查了等比數(shù)列的通項公式,需熟記公式,屬于基礎(chǔ)題.8、C【解析】
根據(jù)不等式的基本性質(zhì),對樣本數(shù)據(jù)按從小到大排列為,取中間的平均數(shù).【詳解】,,則該組樣本的中位數(shù)為中間兩數(shù)的平均數(shù),即.【點(diǎn)睛】考查基本不等式性質(zhì)運(yùn)用和中位數(shù)的定義.9、A【解析】由題意得,數(shù)列如下:則該數(shù)列的前項和為,要使,有,此時,所以是第組等比數(shù)列的部分和,設(shè),所以,則,此時,所以對應(yīng)滿足條件的最小整數(shù),故選A.點(diǎn)睛:本題非常巧妙地將實(shí)際問題和數(shù)列融合在一起,首先需要讀懂題目所表達(dá)的具體含義,以及觀察所給定數(shù)列的特征,進(jìn)而判斷出該數(shù)列的通項和求和.另外,本題的難點(diǎn)在于數(shù)列里面套數(shù)列,第一個數(shù)列的和又作為下一個數(shù)列的通項,而且最后幾項并不能放在一個數(shù)列中,需要進(jìn)行判斷.10、B【解析】
先求平均值,再結(jié)合方差公式求解即可.【詳解】解:由題意可得,由方差公式可得:,故選:B.【點(diǎn)睛】本題考查了樣本數(shù)據(jù)的方差,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:當(dāng)時,,,因是奇函數(shù),所以,是定義域?yàn)镽的奇函數(shù),所以,所以考點(diǎn):函數(shù)解析式、函數(shù)的奇偶性12、【解析】
先令,得到,兩式作差,根據(jù)等比數(shù)列的求和公式,化簡整理,即可得出結(jié)果.【詳解】令,則,兩式作差得:所以故答案為:【點(diǎn)睛】本題主要考查數(shù)列的求和,熟記錯位相加法求數(shù)列的和即可,屬于常考題型.13、【解析】
根據(jù)數(shù)列的遞推公式求出該數(shù)列的前幾項,找出數(shù)列的周期性,從而求出數(shù)列的前項和的值.【詳解】對任意的,,.則,,,,,,所以,.,且,,故答案為:.【點(diǎn)睛】本題考查數(shù)列遞推公式的應(yīng)用,考查數(shù)列周期性的應(yīng)用,解題時要結(jié)合遞推公式求出數(shù)列的前若干項,找出數(shù)列的規(guī)律,考查推理能力和計算能力,屬于中等題.14、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期為T==215、【解析】
由題意利用兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算法則,求得的值.【詳解】由題意,向量與平行,所以,解得.故答案為.【點(diǎn)睛】本題主要考查了兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算,著重考查了推理與計算能力,屬于基礎(chǔ)題.16、【解析】試題分析:設(shè)等比數(shù)列的公比為,由得,,解得.所以,于是當(dāng)或時,取得最大值.考點(diǎn):等比數(shù)列及其應(yīng)用三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解,(2)證明見詳解,(3)當(dāng)為的中點(diǎn)時,平面平面BDE,證明見詳解【解析】
(1)連接與相交于,可得,結(jié)合線面平行的判定定理即可證明平面(2)先證明和即可得出平面,然后可得,又,即可證明平面(3)當(dāng)為的中點(diǎn)時,平面平面BDE,由已知易得,結(jié)合平面可得平面,進(jìn)而根據(jù)面面垂直的判定定理得到結(jié)論.【詳解】(1)如圖,連接與相交于,則為的中點(diǎn)連接,又為的中點(diǎn)所以,又平面,平面所以平面(2)因?yàn)?,所以四邊形為正方形所以又因?yàn)槠矫妫矫嫠运云矫?,所以又在直三棱柱中,所以平面?)當(dāng)為的中點(diǎn)時,平面平面BDE因?yàn)榉謩e是的中點(diǎn)所以,因?yàn)槠矫嫠云矫?,又平面所以平面平面BDE【點(diǎn)睛】本題考查的是立體幾何中線面平行和垂直的證明,要求我們要熟悉并掌握平行與垂直有關(guān)的判定定理和性質(zhì)定理,在證明的過程中要注意步驟的完整.18、(1)見解析;(2)見解析;【解析】
(1)要證BD⊥平面PAC,只需在平面PAC上找到兩條直線跟BD垂直即證,顯然,從平面中可證,即證.(2)要證明平面PAB⊥平面PAE,可證平面即可.【詳解】(1)證明:因?yàn)槠矫?所以;因?yàn)榈酌媸橇庑危?因?yàn)?平面,所以平面.(2)證明:因?yàn)榈酌媸橇庑吻?,所以為正三角形,所?因?yàn)?所以;因?yàn)槠矫妫矫?所以;因?yàn)樗云矫妫矫?所以平面平面.【點(diǎn)睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.19、(1)(2)【解析】試題分析:(1)先求模的平方將問題轉(zhuǎn)化為向量的數(shù)量積問題.(2)根據(jù)數(shù)量積公式即可求得兩向量的夾角.(1),,所以.(2)設(shè)與的夾角為.則,因?yàn)?,所以.考點(diǎn):1向量的數(shù)量積;2向量的模長.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意首先求得數(shù)列的公差,然后利用等差數(shù)列通項公式可得的通項公式;(Ⅱ)首先求得的表達(dá)式,然后結(jié)合二次函數(shù)的性質(zhì)可得其最小值.【詳解】(Ⅰ)設(shè)等差數(shù)列的公差為,因?yàn)槌傻缺葦?shù)列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知,所以;當(dāng)或者時,取到最小值.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)綠化設(shè)備安裝(綠化設(shè)備安裝)試題及答案
- 2025年大學(xué)本科(食品科學(xué)與工程)食品機(jī)械與設(shè)備試題及答案
- 2025年大學(xué)化學(xué)(環(huán)境化學(xué)基礎(chǔ))試題及答案
- 2025年大學(xué)圖書館學(xué)(圖書館服務(wù)管理)試題及答案
- 2025年中職(觀光農(nóng)業(yè)經(jīng)營)園區(qū)管理綜合測試題及答案
- 2025年中職(船舶駕駛)船舶操縱技術(shù)階段測試試題及答案
- 2025年高職木業(yè)智能裝備應(yīng)用技術(shù)(木工機(jī)械操作)試題及答案
- 2025年大學(xué)本科 皮影表演(表演實(shí)務(wù))試題及答案
- 2025年中職哲學(xué)(倫理學(xué))試題及答案
- 2025年中職高星級飯店運(yùn)營與管理(酒店人力資源管理)試題及答案
- 特種工安全崗前培訓(xùn)課件
- 新疆維吾爾自治區(qū)普通高中2026屆高二上數(shù)學(xué)期末監(jiān)測試題含解析
- 2026屆福建省三明市第一中學(xué)高三上學(xué)期12月月考?xì)v史試題(含答案)
- 2026年遼寧金融職業(yè)學(xué)院單招職業(yè)技能測試題庫附答案解析
- (正式版)DB51∕T 3342-2025 《爐灶用合成液體燃料經(jīng)營管理規(guī)范》
- 2026北京海淀初三上學(xué)期期末語文試卷和答案
- 2024-2025學(xué)年北京市東城區(qū)五年級(上)期末語文試題(含答案)
- 人工智能在醫(yī)療領(lǐng)域的應(yīng)用
- 2025學(xué)年度人教PEP五年級英語上冊期末模擬考試試卷(含答案含聽力原文)
- 【10篇】新部編五年級上冊語文課內(nèi)外閱讀理解專項練習(xí)題及答案
- 全國中學(xué)生數(shù)學(xué)建模競賽試題及答案
評論
0/150
提交評論