版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.定義運(yùn)算,設(shè),若,,,則的值域為()A. B. C. D.2.記為等差數(shù)列的前n項和.若,,則等差數(shù)列的公差為()A.1 B.2 C.4 D.83.三邊,滿足,則三角形是()A.銳角三角形 B.鈍角三角形 C.等邊三角形 D.直角三角形4.已知,其中,則()A. B. C. D.5.已知a=log0.92019,b=A.a(chǎn)<c<b B.a(chǎn)<b<c C.b<a<c D.b<c<a6.已知圓和兩點,,若圓上存在點,使得,則的最大值為()A.7 B.6 C.5 D.47.如圖,正方體ABCD-A1B1C1D1的棱長為2,E是棱AB的中點,F(xiàn)是側(cè)面AA1D1D內(nèi)一點,若EF∥平面BB1D1D,則EF長度的范圍為()A. B. C. D.8.?dāng)?shù)列是各項均為正數(shù)的等比數(shù)列,數(shù)列是等差數(shù)列,且,則()A. B.C. D.9.米勒問題,是指德國數(shù)學(xué)家米勒1471年向諾德爾教授提出的有趣問題:在地球表面的什么部位,一根垂直的懸桿呈現(xiàn)最長(即可見角最大?)米勒問題的數(shù)學(xué)模型如下:如圖,設(shè)是銳角的一邊上的兩定點,點是邊邊上的一動點,則當(dāng)且僅當(dāng)?shù)耐饨訄A與邊相切時,最大.若,點在軸上,則當(dāng)最大時,點的坐標(biāo)為()A. B.C. D.10.菱形ABCD,E是AB邊靠近A的一個三等分點,DE=4,則菱形ABCD面積最大值為()A.36 B.18 C.12 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.已知sin+cosα=,則sin2α=__12.在數(shù)列中,,,若,則的前項和取得最大值時的值為__________.13.向量滿足:,與的夾角為,則=_____________;14.?dāng)?shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列:,,,,,,,,,,…,,,…,,…有如下運(yùn)算和結(jié)論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項和為;④若存在正整數(shù),使,,則.其中正確的結(jié)論是_____.(將你認(rèn)為正確的結(jié)論序號都填上)15.已知,則的取值范圍是_______;16.若正實數(shù)滿足,則的最大值為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,三角形中,,是邊長為l的正方形,平面底面,若分別是的中點.(1)求證:底面;(2)求幾何體的體積.18.等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設(shè),求的值.19.定理:若函數(shù)的圖象關(guān)于直線對稱,且方程有個根,則這個根之和為.利用上述定理,求解下列問題:(1)已知函數(shù),,設(shè)函數(shù)的圖象關(guān)于直線對稱,求的值及方程的所有根之和;(2)若關(guān)于的方程在實數(shù)集上有唯一的解,求的值.20.某家具廠有方木料90,五合板600,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)第張書桌需要方木料O.l,五合板2,生產(chǎn)每個書櫥而要方木料0.2,五合板1,出售一張方桌可獲利潤80元,出售一個書櫥可獲利潤120元.(1)如果只安排生產(chǎn)書桌,可獲利潤多少?(2)怎樣安排生產(chǎn)可使所得利潤最大?21.如圖,在四棱錐中,,且,,,點在上,且.(1)求證:平面⊥平面;(2)求證:直線∥平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意,由于與都是周期函數(shù),且最小正周期都是,故只須在一個周期上考慮函數(shù)的值域即可,分別畫出與的圖象,如圖所示,觀察圖象可得:的值域為,故選C.2、B【解析】
利用等差數(shù)列的前n項和公式、通項公式列出方程組,能求出等差數(shù)列{an}的公差.【詳解】∵為等差數(shù)列的前n項和,,,∴,解得d=2,a1=5,∴等差數(shù)列的公差為2.故選:B.【點睛】本題考查等差數(shù)列的公差,此類問題根據(jù)題意設(shè)公差和首項為d、a1,列出方程組解出即可,屬于基礎(chǔ)題.3、C【解析】
由基本不等式得出,將三個不等式相加得出,由等號成立的條件可判斷出的形狀.【詳解】為三邊,,由基本不等式可得,將上述三個不等式相加得,當(dāng)且僅當(dāng)時取等號,所以,是等邊三角形,故選C.【點睛】本題考查三角形形狀的判斷,考查基本不等式的應(yīng)用,利用基本不等式要注意“一正、二定、三相等”條件的應(yīng)用,考查推理能力,屬于中等題.4、D【解析】
先根據(jù)同角三角函數(shù)關(guān)系求得,再根據(jù)二倍角正切公式得結(jié)果.【詳解】因為,且,所以,因為,所以,因此,從而,,選D.【點睛】本題考查同角三角函數(shù)關(guān)系以及二倍角正切公式,考查基本分析求解能力,屬基礎(chǔ)題.5、A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性以及對數(shù)函數(shù)的單調(diào)性分別判斷出a,b,c的取值范圍,從而可得結(jié)果.【詳解】由對數(shù)函數(shù)的性質(zhì)可得a=log由指數(shù)函數(shù)的性質(zhì)可得b=20190.9>所以a<c<b,故選A.【點睛】本題主要考查對數(shù)函數(shù)的性質(zhì)、指數(shù)函數(shù)的單調(diào)性及比較大小問題,屬于中檔題.解答比較大小問題,常見思路有兩個:一是判斷出各個數(shù)值所在區(qū)間(一般是看三個區(qū)間-∞,0,6、B【解析】由題意知,點P在以原點(0,0)為圓心,以m為半徑的圓上,又因為點P在已知圓上,所以只要兩圓有交點即可,所以,故選B.考點:本小題主要考查兩圓的位置關(guān)系,考查數(shù)形結(jié)合思想,考查分析問題與解決問題的能力.7、C【解析】
過作,交于點,交于,根據(jù)線面垂直關(guān)系和勾股定理可知;由平面可證得面面平行關(guān)系,利用面面平行性質(zhì)可證得為中點,從而得到最小值為重合,最大值為重合,計算可得結(jié)果.【詳解】過作,交于點,交于,則底面平面,平面,平面平面,又平面平面又平面平面,平面為中點為中點,則為中點即在線段上,,則線段長度的取值范圍為:本題正確選項:【點睛】本題考查立體幾何中線段長度取值范圍的求解,關(guān)鍵是能夠確定動點的具體位置,從而找到臨界狀態(tài);本題涉及到立體幾何中線面平行的性質(zhì)、面面平行的判定與性質(zhì)等定理的應(yīng)用.8、B【解析】分析:先根據(jù)等比數(shù)列、等差數(shù)列的通項公式表示出、,然后表示出和,然后二者作差比較即可.詳解:∵an=a1qn﹣1,bn=b1+(n﹣1)d,∵,∴a1q4=b1+5d,=a1q2+a1q6=2(b1+5d)=2b6=2a5﹣2a5=a1q2+a1q6﹣2a1q4=a1q2(q2﹣1)2≥0所以≥故選B.點睛:本題主要考查了等比數(shù)列的性質(zhì).比較兩數(shù)大小一般采取做差的方法.屬于基礎(chǔ)題.9、A【解析】
設(shè)點的坐標(biāo)為,求出線段的中垂線與線段的中垂線交點的橫坐標(biāo),即可得到的外接圓圓心的橫坐標(biāo),由的外接圓與邊相切于點,可知的外接圓圓心的橫坐標(biāo)與點的橫坐標(biāo)相等,即可得到點的坐標(biāo).【詳解】由于點是邊邊上的一動點,且點在軸上,故設(shè)點的坐標(biāo)為;由于,則直線的方程為:,點為直線與軸的交點,故點的坐標(biāo)為;由于為銳角,點是邊邊上的一動點,故;所以線段的中垂線方程為:;線段的中垂線方程為:;故的外接圓的圓心為直線與直線的交點,聯(lián)立,解得:;即的外接圓圓心的橫坐標(biāo)為的外接圓與邊相切于點,邊在軸上,則的外接圓圓心的橫坐標(biāo)與點的橫坐標(biāo)相等,即,解得:或(舍)所以點的坐標(biāo)為;故答案選A【點睛】本題考查直線方程、三角形外接圓圓心的求解,屬于中檔題10、B【解析】
設(shè)出菱形的邊長,在三角形ADE中,用余弦定理表示出cosA【詳解】設(shè)菱形的邊長為3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故選:B【點睛】本小題主要考查余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查菱形的面積公式,考查二次函數(shù)最值的求法,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】∵,∴即,則.故答案為:.12、【解析】
解法一:利用數(shù)列的遞推公式,化簡得,得到數(shù)列為等差數(shù)列,求得數(shù)列的通項公式,得到,,得出所以,,,,進(jìn)而得到結(jié)論;解法二:化簡得,令,求得,進(jìn)而求得,再由,解得或,即可得到結(jié)論.【詳解】解法一:因為①所以②,①②,得即,所以數(shù)列為等差數(shù)列.在①中,取,得即,又,則,所以.因此,所以,,,所以,又,所以時,取得最大值.解法二:由,得,令,則,則,即,代入得,取,得,解得,又,則,故所以,于是.由,得,解得或,又因為,,所以時,取得最大值.【點睛】本題主要考查了數(shù)列的綜合應(yīng)用,以及數(shù)列的最值問題的求解,此類題目是數(shù)列問題中的常見題型,對考生計算能力要求較高,解答中確定通項公式是基礎(chǔ),合理利用數(shù)列的性質(zhì)是關(guān)鍵,能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計算能力等,屬于中檔試題.13、【解析】
根據(jù)模的計算公式可直接求解.【詳解】故填:.【點睛】本題考查了平面向量模的求法,屬于基礎(chǔ)題型.14、①③④【解析】
根據(jù)題中所給的條件,將數(shù)列的項逐個寫出,可以求得,將數(shù)列的各項求出,可以發(fā)現(xiàn)其為等差數(shù)列,故不是等比數(shù)列,利用求和公式求得結(jié)果,結(jié)合條件,去挖掘條件,最后得到正確的結(jié)果.【詳解】對于①,前24項構(gòu)成的數(shù)列是,所以,故①正確;對于②,數(shù)列是,可知其為等差數(shù)列,不是等比數(shù)列,故②不正確;對于③,由上邊結(jié)論可知是以為首項,以為公比的等比數(shù)列,所以有,故③正確;對于④,由③知,即,解得,且,故④正確;故答案是①③④.【點睛】該題考查的是有關(guān)數(shù)列的性質(zhì)以及對應(yīng)量的運(yùn)算,解題的思想是觀察數(shù)列的通項公式,理解項與和的關(guān)系,認(rèn)真分析,仔細(xì)求解,從而求得結(jié)果.15、【解析】
本題首先可以根據(jù)向量的運(yùn)算得出,然后等式兩邊同時平方并化簡,得出,最后根據(jù)即可得出的取值范圍.【詳解】設(shè)向量與向量的夾角為,因為,所以,即,因為,所以,即,所以的取值范圍是.【點睛】本題考查向量的運(yùn)算以及向量的數(shù)量積的相關(guān)性質(zhì),向量的數(shù)量積公式,考查計算能力,是簡單題.16、【解析】
可利用基本不等式求的最大值.【詳解】因為都是正數(shù),由基本不等式有,所以即,當(dāng)且僅當(dāng)時等號成立,故的最大值為.【點睛】應(yīng)用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時要關(guān)注取等條件的驗證.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】試題分析:(1)通過面面平行證明線面平行,所以取的中點,的中點,連接.只需通過證明HG//BC,HF//AB來證明面GHF//面ABC,從而證明底面.(2)原圖形可以看作是以點C為頂點,ABDE為底的四棱錐,所四棱錐的體積公式可求得體積.試題解析:(1)取的中點,的中點,連接.(如圖)∵分別是和的中點,∴,且,,且.又∵為正方形,∴,.∴且.∴為平行四邊形.∴,又平面,∴平面.(2)因為,∴,又平面平面,平面,∴平面.∵三角形是等腰直角三角形,∴.∵是四棱錐,∴.【點睛】證明線面平行時,先直觀判斷平面內(nèi)是否存在一條直線和已知直線平行,若找不到這樣的直線,可以考慮通過面面平行來推導(dǎo)線面平行,應(yīng)用線面平行性質(zhì)的關(guān)鍵是如何確定交線的位置,有時需要經(jīng)過已知直線作輔助平面來確定交線.在應(yīng)用線面平行、面面平行的判定定理和性質(zhì)定理進(jìn)行平行轉(zhuǎn)化時,一定要注意定理成立的條件,嚴(yán)格按照定理成立的條件規(guī)范書寫步驟,如把線面平行轉(zhuǎn)化為線線平行時,必須說清經(jīng)過已知直線的平面與已知平面相交,則直線與交線平行.18、(1);(2)【解析】(Ⅰ)設(shè)等差數(shù)列的公差為.由已知得,解得.所以.(Ⅱ)由(Ⅰ)可得.所以.考點:1、等差數(shù)列通項公式;2、分組求和法.19、(1),;(2).【解析】
(1)根據(jù)定義域和對稱性即可得出的值,求出的解的個數(shù),利用定理得出所有根的和;(2)令,則為偶函數(shù),于是的唯一零點為,于是,即可解出的值.【詳解】解:(1)在上的圖象關(guān)于直線對稱,,令得,,即,.在上有7個零點,方程的所以根之和為.(2)令,則,是偶函數(shù),的圖象關(guān)于軸對稱,即關(guān)于直線對稱,只有1解,的唯一解為,即,,解得.【點睛】本題考查了函數(shù)零點與函數(shù)圖象對稱性的關(guān)系,屬于基礎(chǔ)題.20、(1)只安排生產(chǎn)書桌,最多可生產(chǎn)300張書桌,獲得利潤24000元;(2)生產(chǎn)書桌100張、書櫥400個,可使所得利潤最大【解析】
(1)設(shè)只生產(chǎn)書桌x個,可獲得利潤z元,則,由此可得最大值;(2)設(shè)生產(chǎn)書桌x張,書櫥y個,利潤總額為z元.則,,由線性規(guī)劃知識可求得的最大值.即作可行域,作直線,平移此直線得最優(yōu)解.【詳解】由題意可畫表格如下:方木料()五合板()利潤(元)書桌(個)0.1280書櫥(個)0.21120(1)設(shè)只生產(chǎn)書桌x個,可獲得利潤z元,則,∴∴所以當(dāng)時,(元),即如果只安排生產(chǎn)書桌,最多可生產(chǎn)300張書桌,獲得利潤24000元(2)設(shè)生產(chǎn)書桌x張,書櫥y個,利潤總額為z元.則,∴在直角坐標(biāo)平面內(nèi)作出上面不等式組所表示的平面區(qū)域,即可行域作直線,即直線.把直線l向右上方平移至的位置時,直線經(jīng)過可行域上的點M,此時取得最大值由解得點M的坐標(biāo)為.∴當(dāng),時,(元).因此,生產(chǎn)書桌100張、書櫥400個,可使所得利潤最大所以當(dāng),時,.因此,生產(chǎn)書桌100張、書櫥400個,可使所得利潤最大.【點睛】本題考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 民族彈撥樂器制作工操作水平考核試卷含答案
- 花藝環(huán)境設(shè)計師崗后水平考核試卷含答案
- 實驗動物養(yǎng)殖員誠信考核試卷含答案
- 鋁電解綜合工崗前個人防護(hù)考核試卷含答案
- 自行車裝配工崗前進(jìn)階考核試卷含答案
- 2024年延安職業(yè)技術(shù)學(xué)院輔導(dǎo)員招聘考試真題匯編附答案
- 耐火制品加工工安全技能強(qiáng)化考核試卷含答案
- 2024年遼寧醫(yī)藥職業(yè)學(xué)院馬克思主義基本原理概論期末考試題附答案
- 金屬船體制造工沖突解決強(qiáng)化考核試卷含答案
- 2025年《行測》必考題庫帶答案
- GJB3243A-2021電子元器件表面安裝要求
- 湖北省襄陽市樊城區(qū) 2024-2025學(xué)年七年級上學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測道德與法治試卷
- 汽車維修數(shù)據(jù)共享平臺構(gòu)建-深度研究
- SCR脫硝催化劑體積及反應(yīng)器尺寸計算表
- 《短暫性腦缺血發(fā)作》課件
- 2025年測繪工作總結(jié)范文
- 公司質(zhì)量管理簡介
- 外墻涂料翻新施工方案安全措施
- 中國武術(shù)段位制考評員考核復(fù)習(xí)題
- GB/T 5578-2024固定式發(fā)電用汽輪機(jī)規(guī)范
- 中建《項目目標(biāo)成本測算操作指南》
評論
0/150
提交評論