版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.42.函數(shù),,若在區(qū)間上是單調(diào)函數(shù),,則的值為()A. B.2 C.或 D.或23.下圖是500名學生某次數(shù)學測試成績(單位:分)的頻率分布直方圖,則這500名學生中測試成績在區(qū)間[90,100)中的學生人數(shù)是A.60 B.55 C.45 D.504.已知兩點,若點是圓上的動點,則面積的最大值為()A.13 B.3 C. D.5.在中,角,,所對的邊分別為,,,若,則的值為()A. B. C. D.6.已知等差數(shù)列中,,則公差()A. B. C.1 D.27.如圖,已知平行四邊形,,則()A. B.C. D.8.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是()A. B. C. D.9.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.10.已知向量、的夾角為,,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的圖象在點處的切線方程是,則__________.12.已知,是平面內(nèi)兩個互相垂直的單位向量,若向量滿足,則的最大值是.13.設等比數(shù)列的公比,前項和為,則.14.某單位為了了解用電量度與氣溫之間的關(guān)系,隨機統(tǒng)計了某天的用電量與當天氣溫.氣溫(℃)141286用電量(度)22263438由表中數(shù)據(jù)得回歸直線方程中,據(jù)此預測當氣溫為5℃時,用電量的度數(shù)約為____.15.走時精確的鐘表,中午時,分針與時針重合于表面上的位置,則當下一次分針與時針重合時,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于_______.16.設Sn為數(shù)列{an}的前n項和,若Sn=(-1)nan-,n∈N,則a3=________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在等差數(shù)列中,為其前項和(),且,.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項為,證明:18.在中,角A,B,C所對的邊分別為a,b,c,.(1)求角B;(2)若,求周長的取值范圍.19.已知向量.(1)當時,求的值;(2)設函數(shù),當時,求的值域.20.已知向量,,.(1)若、、三點共線,求;(2)求的面積.21.已知數(shù)列滿足關(guān)系式,.(1)用表示,,;(2)根據(jù)上面的結(jié)果猜想用和表示的表達式,并用數(shù)學歸納法證之.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
等比數(shù)列的公比設為,分別令,結(jié)合等比數(shù)列的定義和通項公式,解方程可得所求首項.【詳解】等比數(shù)列的公比設為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【點睛】本題考查數(shù)列的遞推式的運用,等比數(shù)列的定義和通項公式,考查方程思想和運算能力,屬于基礎題.2、D【解析】
先根據(jù)單調(diào)性得到的范圍,然后根據(jù)得到的對稱軸和對稱中心,考慮對稱軸和對稱中心是否在同一周期內(nèi),分析得到的值.【詳解】因為,則;又因為,則由可知得一條對稱軸為,又因為在區(qū)間上是單調(diào)函數(shù),則由可知的一個對稱中心為;若與是同一周期內(nèi)相鄰的對稱軸和對稱中心,則,則,所以;若與不是同一周期內(nèi)相鄰的對稱軸和對稱中心,則,則,所以.【點睛】對稱軸和對稱中心的判斷:對稱軸:,則圖象關(guān)于對稱;對稱中心:,則圖象關(guān)于成中心對稱.3、D【解析】分析:根據(jù)頻率分布直方圖可得測試成績落在中的頻率,從而可得結(jié)果.詳解:由頻率分布直方圖可得測試成績落在中的頻率為,所以測試成績落在中的人數(shù)為,,故選D.點睛:本題主要考查頻率分布直方圖的應用,屬于中檔題.直觀圖的主要性質(zhì)有:(1)直方圖中各矩形的面積之和為;(2)組距與直方圖縱坐標的乘積為該組數(shù)據(jù)的頻率.4、C【解析】
先求出直線方程,然后計算出圓心到直線的距離,根據(jù)面積的最大時,以及高最大的條件,可得結(jié)果.【詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點到最大距離為所以面積的最大值為故選:C【點睛】本題考查圓與直線的幾何關(guān)系以及點到直線的距離,屬基礎題.5、B【解析】
化簡式子得到,利用正弦定理余弦定理原式等于,代入數(shù)據(jù)得到答案.【詳解】利用正弦定理和余弦定理得到:故選B【點睛】本題考查了正弦定理,余弦定理,三角恒等變換,意在考查學生的計算能力.6、C【解析】
利用通項得到關(guān)于公差d的方程,解方程即得解.【詳解】由題得.故選C【點睛】本題主要考查數(shù)列的通項的基本量的計算,意在考查學生對該知識的理解掌握水平和分析推理能力.7、A【解析】
根據(jù)平面向量的加法運算,即可得到本題答案.【詳解】由題,得.故選:A【點睛】本題主要考查平面向量的加法運算,屬基礎題.8、D【解析】
先求出AB的長,再求點P到直線AB的最小距離和最大距離,即得△ABP面積的最小值和最大值,即得解.【詳解】由題得,由題得圓心到直線AB的距離為,所以點P到直線AB的最小距離為2-1=1,最大距離為2+1=3,所以△ABP的面積的最小值為,最大值為.所以△ABP的面積的取值范圍為[1,3].故選D【點睛】本題主要考查點到直線的距離的計算,考查面積的最值問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.9、C【解析】關(guān)于的不等式,即的解集是,∴不等式,可化為,解得,∴所求不等式的解集是,故選C.10、B【解析】
利用平面向量數(shù)量積和定義計算出,可得出結(jié)果.【詳解】向量、的夾角為,,,則.故選:B.【點睛】本題考查利用平面向量的數(shù)量積來計算平面向量的模,在計算時,一般將模進行平方,利用平面向量數(shù)量積的定義和運算律進行計算,考查計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由導數(shù)的幾何意義可知,又,所以.12、【解析】
,,是平面內(nèi)兩個相互垂直的單位向量,∴,∴,,,為與的夾角,∵是平面內(nèi)兩個相互垂直的單位向量∴,即,所以當時,即與共線時,取得最大值為,故答案為.13、15【解析】分析:運用等比數(shù)列的前n項和公式與數(shù)列通項公式即可得出的值.詳解:數(shù)列為等比數(shù)列,故答案為15.點睛:本題考查了等比數(shù)列的通項公式與前n項和公式,考查學生對基本概念的掌握能力與計算能力.14、1【解析】
由表格得,即樣本中心點的坐標為,又因為樣本中心點在回歸方程上且,解得:,當時,,故答案為1.考點:回歸方程【名師點睛】本題考查線性回歸方程,屬容易題.兩個變量之間的關(guān)系,除了函數(shù)關(guān)系,還存在相關(guān)關(guān)系,通過建立回歸直線方程,就可以根據(jù)其部分觀測值,獲得對這兩個變量之間整體關(guān)系的了解.解題時根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,利用待定系數(shù)法做出的值,現(xiàn)在方程是一個確定的方程,根據(jù)所給的的值,代入線性回歸方程,預報要銷售的件數(shù).15、.【解析】
設時針轉(zhuǎn)過的角的弧度數(shù)為,可知分針轉(zhuǎn)過的角為,于此得出,由此可計算出的值,從而可得出時針轉(zhuǎn)過的弧度數(shù)的絕對值的值.【詳解】設時針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由分針的角速度是時針角速度的倍,知分針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由題意可知,,解得,因此,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于,故答案為.【點睛】本題考查弧度制的應用,主要是要弄清楚時針與分針旋轉(zhuǎn)的角之間的等量關(guān)系,考查分析問題和計算能力,屬于中等題.16、-【解析】當n=3時,S3=a1+a2+a3=-a3-,則a1+a2+2a3=-,當n=4時,S4=a1+a2+a3+a4=a4-,兩式相減得a3=-.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)運用等差數(shù)列的通項公式和求和公式,解方程組,可得首項和公差,即可得到所求通項;(2)化簡,再利用裂項相消求數(shù)列的和,化簡整理,即可證得.【詳解】(1)設等差數(shù)列的公差是,由,,得解得,,∴.(2)由(1)知,,∴,,因為,則成立.【點睛】本題考查等差數(shù)列的通項公式的求法,也考查了裂項相消求和求數(shù)列的和,考查化簡整理的運算能力,屬于中檔題.18、(1);(2)【解析】
(1)根據(jù)輔助角公式和的范圍,得到的值;(2)利用余弦定理和基本不等式,得到的范圍,結(jié)合三角形三邊關(guān)系,從而得到周長的取值范圍.【詳解】(1)因為,所以,即,因為,所以,所以,所以;(2)在中,由余弦定理得由基本不等式可知,又,所以解得,根據(jù)三角形三邊關(guān)系得,即,故所以周長的范圍為.【點睛】本題考查輔助角公式,余弦定理解三角形,基本不等式求最值,三角形三邊關(guān)系,屬于中檔題.19、(1)-7,(2)【解析】試題分析:(1)由向量共線得到等量關(guān)系,求出角的正切值,再利用兩角差正切公式求解:(2)先根據(jù)向量數(shù)量積,利用二倍角公式及配角公式得到三角函數(shù)關(guān)系式,再從角出發(fā)研究基本三角函數(shù)范圍:試題解析:(1),3分6分(2)8分11分,的值域為14分考點:向量平行坐標表示,三角函數(shù)性質(zhì)20、(1)(2)【解析】
(1)根據(jù)題意,若、、三點共線,則表達和,根據(jù)向量共線定理的坐標表示,可求解參數(shù)值,即可求解模長.(2)根據(jù)題意,先求,,再求向量、的夾角,代入三角形面積公式,即可求解.【詳解】解:(1)已知向量,,∴,,由點、、三點共線,得.解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 易錯題培訓教學課件
- 2026年生物科技服務公司檢測報告編制與審批管理制度
- 秋季美白護膚培訓課件
- 六度人脈培訓課件
- 職業(yè)培訓中心課件制作
- 2026屆高考英語應用文寫作素材+各段常用句式+課件
- 平面的投影課件(共18張)-中職《機械制圖》同步教學(中國人民大學出版社)
- 護理課件配色方案
- 2026年汽車碳管理技術(shù)創(chuàng)新培訓
- 簡短戒煙培訓
- 2025食品機械行業(yè)智能化分析及技術(shù)升級趨勢與投資可行性評估報告
- 2025年度黨委黨建工作總結(jié)
- 《經(jīng)濟法學》2025-2025期末試題及答案
- CAICV智能網(wǎng)聯(lián)汽車遠程升級(OTA)發(fā)展現(xiàn)狀及建議
- 新質(zhì)生產(chǎn)力在體育產(chǎn)業(yè)高質(zhì)量發(fā)展中的路徑探索
- 2025年公民素質(zhì)養(yǎng)成知識考察試題及答案解析
- 老年人營養(yǎng)和飲食
- 《關(guān)鍵軟硬件自主可控產(chǎn)品名錄》
- 2025年濟南市九年級中考語文試題卷附答案解析
- 信息安全風險評估及應對措施
- 紅藍黃光治療皮膚病臨床應用專家共識(2025版)解讀
評論
0/150
提交評論