版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖所示,在正方體ABCD—A1B1C1D1中,若E是A1C1的中點,則直線CE垂直于()A.AC B.A1D1 C.A1D D.BD2.直線:與圓的位置關(guān)系為()A.相離 B.相切 C.相交 D.無法確定3.如圖,在四棱錐中,底面為平行四邊形,,,,,且平面,為的中點,則下列結(jié)論錯誤的是()A. B.C.平面平面 D.三棱錐的體積為4.已知是兩條不同的直線,是兩個不同的平面,則下列命題正確的是A.,則B.,則C.,則D.,則5.設的內(nèi)角,,所對的邊分別為,,,且,,面積的最大值為()A.6 B.8 C.7 D.96.已知向量,,若,共線,則實數(shù)()A. B. C. D.67.延長正方形的邊至,使得.若動點從點出發(fā),沿正方形的邊按逆時針方向運動一周回到點,若,下列判斷正確的是()A.滿足的點必為的中點B.滿足的點有且只有一個C.的最小值不存在D.的最大值為8.某實驗中學共有職工150人,其中高級職稱的職工15人,中級職稱的職工45人,一般職員90人,現(xiàn)采用分層抽樣抽取容量為30的樣本,則抽取的高級職稱、中級職稱、一般職員的人數(shù)分別為A.5、10、15 B.3、9、18 C.3、10、17 D.5、9、169.在中,點是邊上的靠近的三等分點,則()A. B.C. D.10.如圖所示是正方體的平面展開圖,在這個正方體中CN與BM所成角為()A.30° B.45° C.60° D.90°二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,是與的等比中項,則最小值為_________.12.設,用,表示所有形如的正整數(shù)集合,其中且,為集合中的所有元素之和,則的通項公式為_______13.已知與之間的一組數(shù)據(jù),則與的線性回歸方程必過點__________.14.已知,均為銳角,,,則______.15.直線與圓交于兩點,若為等邊三角形,則______.16.已知實數(shù)滿足,則的最大值為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設數(shù)列,,已知,,(1)求數(shù)列的通項公式;(2)設為數(shù)列的前項和,對任意.(i)求證:;(ii)若恒成立,求實數(shù)的取值范圍.18.為了對某課題進行研究,用分層抽樣方法從三所高校,,的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).高校相關(guān)人員抽取人數(shù)A18B362C54(1)求,;(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.19.已知直線l的方程為.(1)求過點且與直線l垂直的直線方程;(2)求直線與的交點,且求這個點到直線l的距離.20.己知,,且函數(shù)的圖像上的任意兩條對稱軸之間的距離的最小值是.(1)求的值:(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)在上的最值,并求取得最值時的的值.21.的內(nèi)角的對邊分別為,已知.(1)求;(2)若為銳角三角形,且,求面積的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
在正方體內(nèi)結(jié)合線面關(guān)系證明線面垂直,繼而得到線線垂直【詳解】,平面,平面,則平面又因為平面則故選D【點睛】本題考查了線線垂直,在求解過程中先求得線面垂直,由線面垂直的性質(zhì)可得線線垂直,從而得到結(jié)果2、C【解析】
求出圓的圓心坐標和半徑,然后運用點到直線距離求出的值和半徑進行比較,判定出直線與圓的關(guān)系.【詳解】因為圓,所以圓心,半徑,所以圓心到直線的距離為,則直線與圓相交.故選【點睛】本題考查了直線與圓的位置關(guān)系,運用點到直線的距離公式求出和半徑比較,得到直線與圓的位置關(guān)系.3、B【解析】
根據(jù)余弦定理可求得,利用勾股定理證得,由線面垂直性質(zhì)可知,利用線面垂直判定定理可得平面,利用線面垂直性質(zhì)可知正確;假設正確,由和假設可證得平面,由線面垂直性質(zhì)可知,從而得到,顯然錯誤,則錯誤;由面面垂直判定定理可證得正確;由可求得三棱錐體積,知正確,從而可得選項.【詳解】,,平面,平面又平面,平面平面,則正確;若,又且平面,平面平面又,與矛盾,假設錯誤,則錯誤;平面,平面又平面平面平面,則正確;為中點,,則正確本題正確選項:【點睛】本題考查立體幾何中相關(guān)命題的判斷,涉及到線面垂直的判定與性質(zhì)定理的應用、面面垂直關(guān)系的判定、三棱錐體積的求解等知識,是對立體幾何部分的定理的綜合考查,關(guān)鍵是能夠準確判定出圖形中的線面垂直關(guān)系.4、D【解析】
根據(jù)空間中直線與平面的位置關(guān)系的相關(guān)定理依次判斷各個選項即可.【詳解】兩平行平面內(nèi)的直線的位置關(guān)系為:平行或異面,可知錯誤;且,此時或,可知錯誤;,,,此時或,可知錯誤;兩平行線中一條垂直于一個平面,則另一條必垂直于該平面,正確.本題正確選項:【點睛】本題考查空間中直線與平面、平面與平面位置關(guān)系的判定,考查學生對于定理的掌握程度,屬于基礎(chǔ)題.5、D【解析】
由已知利用基本不等式求得的最大值,根據(jù)三角形的面積公式,即可求解,得到答案.【詳解】由題意,利用基本不等式可得,即,解得,當且僅當時等號成立,又因為,所以,當且僅當時等號成立,故三角形的面積的最大值為,故選D.【點睛】本題主要考查了基本不等式的應用,以及三角形的面積公式的應用,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于基礎(chǔ)題.6、C【解析】
利用向量平行的性質(zhì)直接求解.【詳解】向量,,共線,,解得實數(shù).故選:.【點睛】本題主要考查向量平行的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.7、D【解析】試題分析:設正方形的邊長為1,建立如圖所示直角坐標系,則的坐標為,則設,由得,所以,當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;由以上討論可知,當時,可為的中點,也可以是點,所以A錯;使的點有兩個,分別為點與中點,所以B錯,當運動到點時,有最小值,故C錯,當運動到點時,有最大值,所以D正確,故選D.考點:向量的坐標運算.【名師點睛】本題考查平面向量線性運算,屬中檔題.平面向量是高考的必考內(nèi)容,向量坐標化是聯(lián)系圖形與代數(shù)運算的渠道,通過構(gòu)建直角坐標系,使得向量運算完全代數(shù)化,通過加、減、數(shù)乘的運算法則,實現(xiàn)了數(shù)形的緊密結(jié)合,同時將參數(shù)的取值范圍問題轉(zhuǎn)化為求目標函數(shù)的取值范圍問題,在解題過程中,還常利用向量相等則坐標相同這一原則,通過列方程(組)求解,體現(xiàn)方程思想的應用.8、B【解析】試題分析:高級職稱應抽取;中級職稱應抽??;一般職員應抽取.考點:分層抽樣點評:本題主要考查分層抽樣的定義與步驟.分層抽樣:當總體是由差異明顯的幾個部分組成的,可將總體按差異分成幾個部分(層),再按各部分在總體中所占比例進行抽樣.9、A【解析】
將題中所體現(xiàn)的圖形畫出,可以很直觀的判斷向量的關(guān)系.【詳解】如圖有向量運算可以知道:,選擇A【點睛】考查平面向量基本定理,利用好兩向量加法的計算原則:首尾相連,首尾相接.10、C【解析】
把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故∠EBM(或其補角)為所求.再由△BEM是等邊三角形,可得∠EBM=60°,從而得出結(jié)論.【詳解】把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故異面直線CN與BM所成的角就是BE和BM所成的角,故∠EBM(或其補角)為所求,再由BEM是等邊三角形,可得∠EBM=60,故選:C【點睛】本題主要考查了求異面直線所成的角,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
根據(jù)等比中項定義得出的關(guān)系,然后用“1”的代換轉(zhuǎn)化為可用基本不等式求最小值.【詳解】由題意,所以,所以,當且僅當,即時等號成立.所以最小值為1.故答案為:1.【點睛】本題考查等比中項的定義,考查用基本不等式求最值.解題關(guān)鍵是用“1”的代換找到定值,從而可用基本不等式求最值.12、【解析】
把集合中每個數(shù)都表示為2的0到的指數(shù)冪相加的形式,并確定,,,,每個數(shù)都出現(xiàn)次,于是利用等比數(shù)列求和公式計算,可求出數(shù)列的通項公式.【詳解】由題意可知,,,,是0,1,2,,的一個排列,且集合中共有個數(shù),若把集合中每個數(shù)表示為的形式,則,,,,每個數(shù)都出現(xiàn)次,因此,,故答案為:.【點睛】本題以數(shù)列新定義為問題背景,考查等比數(shù)列的求和公式,考查學生的理解能力與計算能力,屬于中等題.13、【解析】
根據(jù)線性回歸方程一定過樣本中心點,計算這組數(shù)據(jù)的樣本中心點,求出和的平均數(shù)即可求解.【詳解】由題意可知,與的線性回歸方程必過樣本中心點,,所以線性回歸方程必過.故答案為:【點睛】本題是一道線性回歸方程題目,需掌握線性回歸方程必過樣本中心點這一特征,屬于基礎(chǔ)題.14、【解析】
先求出,,再由,并結(jié)合兩角和與差的正弦公式求解即可.【詳解】由題意,可知,則,又,則,或者,因為為銳角,所以不成立,即成立,所以.故.故答案為:.【點睛】本題考查兩角和與差的正弦公式的應用,考查同角三角函數(shù)基本關(guān)系的應用,考查學生的計算求解能力,屬于中檔題.15、或【解析】
根據(jù)題意可得圓心到直線的距離為,根據(jù)點到直線的距離公式列方程解出即可.【詳解】圓,即,圓的圓心為,半徑為,∵直線與圓交于兩點且為等邊三角形,∴,故圓心到直線的距離為,即,解得或,故答案為或.【點睛】本題主要考查了直線和圓相交的弦長公式,以及點到直線的距離公式,考查運算能力,屬于中檔題.16、【解析】
根據(jù)約束條件,畫出可行域,目標函數(shù)可以看成是可行域內(nèi)的點和的連線的斜率,從而找到最大值時的最優(yōu)解,得到最大值.【詳解】根據(jù)約束條件可以畫出可行域,如下圖陰影部分所示,目標函數(shù)可以看成是可行域內(nèi)的點和的連線的斜率,因此可得,當在點時,斜率最大聯(lián)立,得即所以此時斜率為,故答案為.【點睛】本題考查簡單線性規(guī)劃問題,求目標函數(shù)為分式的形式,關(guān)鍵是要對分式形式的轉(zhuǎn)化,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)(i)見證明;(ii)【解析】
(1)計算可知數(shù)列為等比數(shù)列;(2)(i)要證即證{}恒為0;(ii)由前兩問求出再求出,帶入式子,再解不等式.【詳解】(1),又,是以2為首項,為公比的等比數(shù)列,;(2)(i),又恒成立,即(ii)由,,兩式相加即得:,,,,當n為奇數(shù)時,隨n的增大而遞增,且;當n為偶數(shù)時,隨n的增大而遞減,且;的最大值為,的最小值為2,解得,所以實數(shù)p的取值范圍為.【點睛】本類試題,注意看問題,一般情況,問題都會指明解題方向18、(1),(2)【解析】
(1)根據(jù)分層抽樣的概念,可得,求解即可;(2)分別記從高校抽取的2人為,,從高校抽取的3人為,,,先列出從5人中選2人作專題發(fā)言的基本事件,再列出2人都來自高校的基本事件,進而求出概率【詳解】(1)由題意可得,所以,(2)記從高校抽取的2人為,,從高校抽取的3人為,,,則從高校,抽取的5人中選2人作專題發(fā)言的基本事件有,,,,,,,,,共10種設選中的2人都來自高校的事件為,則包含的基本事件有,,共3種因此,故選中的2人都來自高校的概率為【點睛】本題考查分層抽樣,考查古典概型,屬于基礎(chǔ)題19、(1)(2)1【解析】
(1)與l垂直的直線方程可設為,再將點代入方程可得;(2)先求兩直線的交點,再用點到直線的距離公式可得點到直線l的距離.【詳解】解:(1)設與直線垂直的直線方程為,把代入,得,解得,∴所求直線方程為.(2)解方程組得∴直線與的交點為,點到直線的距離.【點睛】本題考查兩直線垂直時方程的求法和點到直線的距離公式.20、(1)1;(1)此時,此時【解析】
(1)由條件利用兩角和差的正弦公式化簡f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,從而求得f()的值.(1)由條件利用函數(shù)y=Asin(ωx+)的圖象變換規(guī)律求得g(x)的解析式,再根據(jù)正弦函數(shù)的定義域和值域求得g(x)在x∈[]上的最值.【詳解】(1)f(x)=sin(ωx+)+cos(ωx+)=,故,求得ω=1.再根據(jù),可得=﹣,故.(1)將函數(shù)y=f(x)的圖象向右平移個單位后,得到函數(shù)y=g(x)=的圖象.∵x∈[],∴,當時,即時,g(x)取得最大值為;當時,即時,g(x)取得最小值為2.【點睛】本題主要考查兩角和差的正弦公式,由函數(shù)y=Asin(ωx+)的部分圖象求解析式,函數(shù)y=Asin(ωx+)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于中檔題.21、(1);(2).【解析】
(1)利用正弦定理化簡題中等式,得到關(guān)于B的三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國汽車芯片認證標準體系構(gòu)建與替代窗口期預測研究報告
- 2026年湛江市坡頭區(qū)城市管理和綜合執(zhí)法局公開招聘政府雇員(非編制人員)備考題庫及完整答案詳解一套
- 2025至2030中國現(xiàn)制茶飲供應鏈標準化建設與加盟商管理優(yōu)化報告
- 中電建基礎(chǔ)局廊坊建設工程有限公司技能操作崗2026屆校園招聘備考題庫含答案詳解
- 2025-2030中國功能性飼料市場發(fā)展分析及市場趨勢與投資方向研究報告
- 中山市第八人民醫(yī)院(中山市人民醫(yī)院黃圃院區(qū))2026年衛(wèi)生專業(yè)技術(shù)人才招聘備考題庫及完整答案詳解1套
- 佛山市南海區(qū)人民醫(yī)院2026年度合同制專業(yè)技術(shù)人員(第一批)招聘備考題庫及答案詳解1套
- 大唐克騰煤制天然氣有限責任公司2026屆畢業(yè)生招聘備考題庫及一套答案詳解
- 2026年玉溪市生態(tài)環(huán)境局華寧分局編外辦公輔助(內(nèi)勤相關(guān))人員公開招聘備考題庫有答案詳解
- 2025-2030中國智能智能電磁爐控制系統(tǒng)行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 網(wǎng)絡銷售人員培訓
- 合肥市軌道交通集團有限公司招聘筆試題庫及答案2025
- 《智慧水電廠建設技術(shù)規(guī)范》
- GB/T 46275-2025中餐評價規(guī)范
- 2025年6月大學英語四級閱讀試題及答案
- 信訪工作系列知識培訓課件
- 壓力變送器拆校課件
- 2025年高考真題分類匯編必修二 《經(jīng)濟與社會》(全國)(原卷版)
- 2026屆高考英語二輪復習:2025浙江1月卷讀后續(xù)寫 課件
- 2.3.2 中國第一大河-長江 課件 湘教版地理八年級上冊
- 2025貴州省某大型國有企業(yè)招聘光伏、風電項目工作人員筆試備考題庫及答案解析
評論
0/150
提交評論