基于深度學(xué)習(xí)的離線手寫簽名認(rèn)證算法研究_第1頁(yè)
基于深度學(xué)習(xí)的離線手寫簽名認(rèn)證算法研究_第2頁(yè)
基于深度學(xué)習(xí)的離線手寫簽名認(rèn)證算法研究_第3頁(yè)
基于深度學(xué)習(xí)的離線手寫簽名認(rèn)證算法研究_第4頁(yè)
基于深度學(xué)習(xí)的離線手寫簽名認(rèn)證算法研究_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于深度學(xué)習(xí)的離線手寫簽名認(rèn)證算法研究基于深度學(xué)習(xí)的離線手寫簽名認(rèn)證算法研究

摘要

手寫簽名是現(xiàn)代社會(huì)最常用的身份認(rèn)證方式之一。離線手寫簽名認(rèn)證算法研究是一項(xiàng)重要的研究領(lǐng)域,它可以對(duì)簽名進(jìn)行高效、準(zhǔn)確的識(shí)別,進(jìn)一步加強(qiáng)身份驗(yàn)證的精度和安全性。本論文主要圍繞離線手寫簽名認(rèn)證算法進(jìn)行探討,使用深度學(xué)習(xí)技術(shù)對(duì)離線手寫簽名進(jìn)行特征提取和認(rèn)證。首先介紹了理論基礎(chǔ),包括手寫簽名的特點(diǎn)和離線手寫簽名的特征提取方法。然后詳細(xì)介紹了深度學(xué)習(xí)技術(shù)和卷積神經(jīng)網(wǎng)絡(luò)的基本原理和應(yīng)用,包括CNN、LSTM等網(wǎng)絡(luò)結(jié)構(gòu)的應(yīng)用。接著,本論文提出了基于深度學(xué)習(xí)的離線手寫簽名認(rèn)證算法,包括簽名圖像的預(yù)處理、特征提取和簽名識(shí)別三個(gè)主要環(huán)節(jié)。最后,通過實(shí)驗(yàn)分析驗(yàn)證了本算法的有效性和實(shí)用性,對(duì)比其他算法得出了優(yōu)越性。本論文研究成果可為離線手寫簽名的認(rèn)證和智能化安全提供技術(shù)支持和應(yīng)用基礎(chǔ)。

關(guān)鍵詞:離線手寫簽名、深度學(xué)習(xí)、特征提取、認(rèn)證算法、卷積神經(jīng)網(wǎng)絡(luò)

Abstract

Offlinehandwrittensignatureisoneofthemostcommonlyusedidentityverificationmethodsinmodernsociety.TheresearchofOfflinehandwrittensignatureverificationalgorithmisanimportantresearchfield,whichcanefficientlyandaccuratelyrecognizesignaturesandfurtherenhancetheaccuracyandsecurityofidentityverification.Thispapermainlydiscussestheofflinehandwrittensignatureverificationalgorithmandusesdeeplearningtechnologytoextractfeaturesandverifyofflinehandwrittensignatures.Firstly,thetheoreticalbasisisintroduced,includingthecharacteristicsofhandwrittensignaturesandthefeatureextractionmethodsofofflinehandwritingsignatures.Then,wedetailedintroducethebasicprinciplesandapplicationsofdeeplearningtechnologyandconvolutionalneuralnetworks,includingtheapplicationofCNN,LSTMandothernetworkstructures.Next,thispaperproposedanofflinehandwrittensignatureverificationalgorithmbasedondeeplearning,includingthreemainprocesses:preprocessing,featureextraction,andsignaturerecognition.Finally,theeffectivenessandpracticabilityofthealgorithmwereverifiedthroughexperiments,andsuperioritycomparedwithotheralgorithmswasobtained.Theresearchresultsofthispapercanprovidetechnicalsupportandapplicationfoundationfortheauthenticationandintelligentsecurityofofflinehandwrittensignatures.

Keywords:Offlinehandwrittensignature,deeplearning,featureextraction,verificationalgorithm,ConvolutionalNeuralNetworkOfflinehandwrittensignatureverificationisbecomingincreasinglyimportantforpersonalidentificationandsecurityapplications.Inthispaper,weproposeafeatureextractionandverificationalgorithmforofflinehandwrittensignaturesbasedondeeplearningtechniques.

Firstly,weadoptapre-processingmethodtoremovethebackgroundnoiseofthesignatureimages,whichcangreatlyimprovetherecognitionaccuracy.Then,weuseaConvolutionalNeuralNetwork(CNN)toautomaticallylearndiscriminativefeaturesfromthesignatureimages.Specifically,wetraintheCNNonalargedatasetofsignatureimagestoextractthefeaturesthataremostrelevantforverification.

Next,weproposeaverificationalgorithmbasedontemplatematchingandsignaturerecognition.Firstly,wegenerateatemplatesignaturebyaveragingmultiplesignatureimagesofthesameperson.Then,weusetheCNNtorecognizethetestsignaturesandcomparethemwiththetemplatesignaturetodeterminewhethertheybelongtothesameperson.

Finally,weevaluatetheeffectivenessandpracticabilityofouralgorithmthroughexperimentsonapubliclyavailabledataset.Theexperimentalresultsshowthatouralgorithmachievessuperiorperformancecomparedtootherstate-of-the-artalgorithmsforofflinehandwrittensignatureverification.

Inconclusion,thispaperproposesanovelfeatureextractionandverificationalgorithmforofflinehandwrittensignaturesbasedondeeplearningtechniques.TheproposedalgorithmcanprovidetechnicalsupportandapplicationfoundationfortheauthenticationandintelligentsecurityofofflinehandwrittensignaturesTheapplicationofofflinehandwrittensignatureverificationalgorithmshasbecomeincreasinglyimportantasdigitalauthenticationandsecuritymeasurescontinuetodevelop.Theproposedalgorithminthispaperofferssignificantadvancementsinbothaccuracyandefficiencycomparedtocurrentstate-of-the-artmethods.

Onepotentialapplicationofthisalgorithmisinfinancialinstitutions,wheretheverificationofsignaturesisessentialforensuringsecuretransactions.Byimplementingthisalgorithm,banksandotherfinancialorganizationscanofferincreasedsecuritytotheircustomers,reducingtheriskoffraudulentactivity.

Additionally,thisalgorithmhaspotentialusesinotherindustrieswhereauthenticationiscrucial,suchashealthcareandgovernmentagencies.Theabilitytoaccuratelyverifysignaturescanhelppreventidentitytheftandotherfraudulentactivities,increasingoverallsecuritymeasuresforindividualsandorganizations.

Overall,thedevelopmentofthisalgorithmrepresentsasignificantcontributiontothefieldofofflinehandwrittensignatureverification.Withpotentialapplicationsacrossvariousindustries,thisresearchoffersanessentialfoundationforthedevelopmentofincreasedsecuritymeasuresandauthenticationtechniquesInadditiontoitspotentialimpactonsecuritymeasures,thealgorithmdevelopedforofflinehandwrittensignatureverificationcouldalsohaveimplicationsforthefieldofforensics.Handwritinganalysisisacriticaltoolusedinforensicinvestigations,andtheabilitytoaccuratelyverifysignaturescouldpotentiallyaidinidentifyingsuspectsordeterminingtheauthenticityofimportantdocuments.

Furthermore,theresearchconductedinthisfieldcouldalsohavesignificantimplicationsforthedevelopmentofmachinelearningandcomputervisiontechnologies.Theprocessofhandwritinganalysisinvolvescomplexpatternrecognitionandclassificationtechniques,whichhaveanapplicationinnumerousotherfields,includingimageandspeechrecognition.

Astechnologycontinuestoadvance,itislikelythatthedemandforenhancedsecuritymeasureswillcontinuetogrow.Theabilitytoaccuratelyverifysignaturesremainsanimportanttoolincombatingidentitytheftandotherformsoffraud.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論