版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一個多邊形的每一個外角都等于72°,這個多邊形是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形2.已知一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形3.下列圖形中為正方體的平面展開圖的是()A. B.C. D.4.的算術(shù)平方根是()A.9 B.±9 C.±3 D.35.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(
)A.2cm2
B.3cm2
C.4cm2
D.5cm26.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處7.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點B的直線折疊這個三角形,使頂點C落在AB邊上的點E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm8.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1259.在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點.對于一條直線,當(dāng)它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.1010.已知x1,x2是關(guān)于x的方程x2+ax-2b=0的兩個實數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-111.若關(guān)于x的一元二次方程x(x+2)=m總有兩個不相等的實數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<112.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將一次函數(shù)的圖象平移,使其經(jīng)過點(2,3),則所得直線的函數(shù)解析式是______.14.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值是.15.如圖,直線與軸交于點,與軸交于點,點在軸的正半軸上,,過點作軸交直線于點,若反比例函數(shù)的圖象經(jīng)過點,則的值為_________________.16.在實數(shù)范圍內(nèi)分解因式:x2y﹣2y=_____.17.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.18.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),BC平分∠ABO交x軸于點C(2,0).點P是線段AB上一個動點(點P不與點A,B重合),過點P作AB的垂線分別與x軸交于點D,與y軸交于點E,DF平分∠PDO交y軸于點F.設(shè)點D的橫坐標為t.(1)如圖1,當(dāng)0<t<2時,求證:DF∥CB;(2)當(dāng)t<0時,在圖2中補全圖形,判斷直線DF與CB的位置關(guān)系,并證明你的結(jié)論;(3)若點M的坐標為(4,-1),在點P運動的過程中,當(dāng)△MCE的面積等于△BCO面積的倍時,直接寫出此時點E的坐標.20.(6分)剪紙是中國傳統(tǒng)的民間藝術(shù),它畫面精美,風(fēng)格獨特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“金魚”,另外一張卡片的正面圖案為“蝴蝶”,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是“金魚”的概率.(圖案為“金魚”的兩張卡片分別記為A1、A2,圖案為“蝴蝶”的卡片記為B)21.(6分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象的兩個交點.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求直線AB與x軸的交點C的坐標及△AOB的面積;(3)求方程的解集(請直接寫出答案).22.(8分)如圖,AB是⊙O的直徑,點C為⊙O上一點,經(jīng)過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長.23.(8分)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AF=CE=AE.(1)說明四邊形ACEF是平行四邊形;(2)當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.24.(10分)計算:3tan30°+|2﹣|﹣(3﹣π)0﹣(﹣1)2018.25.(10分)某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖,回答下列問題:(1)這次調(diào)查中,一共調(diào)查了多少名學(xué)生?(2)求出扇形統(tǒng)計圖中“B:跳繩”所對扇形的圓心角的度數(shù),并補全條形圖;(3)若該校有2000名學(xué)生,請估計選擇“A:跑步”的學(xué)生約有多少人?26.(12分)如圖,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,請僅用無刻度直尺作圖:在圖1中作出圓心O;在圖2中過點B作BF∥AC.27.(12分)某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖,回答下列問題:(1)本次調(diào)查學(xué)生共人,a=,并將條形圖補充完整;(2)如果該校有學(xué)生2000人,請你估計該校選擇“跑步”這種活動的學(xué)生約有多少人?(3)學(xué)校讓每班在A、B、C、D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
任何多邊形的外角和是360°,用360°除以一個外角度數(shù)即可求得多邊形的邊數(shù).【詳解】360°÷72°=1,則多邊形的邊數(shù)是1.故選C.【點睛】本題主要考查了多邊形的外角和定理,已知外角求邊數(shù)的這種方法是需要熟記的內(nèi)容.2、D【解析】
根據(jù)多邊形的外角和是360°,以及多邊形的內(nèi)角和定理即可求解.【詳解】設(shè)多邊形的邊數(shù)是n,則(n?2)?180=3×360,解得:n=8.故選D.【點睛】此題考查多邊形內(nèi)角與外角,解題關(guān)鍵在于掌握其定理.3、C【解析】
利用正方體及其表面展開圖的特點依次判斷解題.【詳解】由四棱柱四個側(cè)面和上下兩個底面的特征可知A,B,D上底面不可能有兩個,故不是正方體的展開圖,選項C可以拼成一個正方體,故選C.【點睛】本題是對正方形表面展開圖的考查,熟練掌握正方體的表面展開圖是解題的關(guān)鍵.4、D【解析】
根據(jù)算術(shù)平方根的定義求解.【詳解】∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算術(shù)平方根是1.
即的算術(shù)平方根是1.
故選:D.【點睛】考核知識點:算術(shù)平方根.理解定義是關(guān)鍵.5、C【解析】
延長AP交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【點睛】本題考查了三角形面積和全等三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是求出S△PBC=S△PBE+S△PCE=12S△6、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.7、A【解析】試題分析:由折疊的性質(zhì)知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質(zhì)知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點評:本題利用了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.8、B【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.9、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.10、A【解析】
根據(jù)根與系數(shù)的關(guān)系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關(guān)于x的方程x2+ax﹣2b=0的兩實數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.11、C【解析】
將關(guān)于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關(guān)于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關(guān)鍵.12、C【解析】
結(jié)合圖形,逐項進行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題分析:解:設(shè)y=x+b,∴3=2+b,解得:b=1.∴函數(shù)解析式為:y=x+1.故答案為y=x+1.考點:一次函數(shù)點評:本題要注意利用一次函數(shù)的特點,求出未知數(shù)的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.14、2【解析】試題分析:分析前三個正方形可知,規(guī)律為右上和左下兩個數(shù)的積減左上的數(shù)等于右下的數(shù),且左上,左下,右上三個數(shù)是相鄰的偶數(shù).因此,圖中陰影部分的兩個數(shù)分別是左下是12,右上是1.解:分析可得圖中陰影部分的兩個數(shù)分別是左下是12,右上是1,則m=12×1﹣10=2.故答案為2.考點:規(guī)律型:數(shù)字的變化類.15、1【解析】
先求出直線y=x+2與坐標軸的交點坐標,再由三角形的中位線定理求出CD,得到C點坐標.【詳解】解:令x=0,得y=x+2=0+2=2,
∴B(0,2),
∴OB=2,
令y=0,得0=x+2,解得,x=-6,
∴A(-6,0),
∴OA=OD=6,
∵OB∥CD,
∴CD=2OB=4,
∴C(6,4),
把c(6,4)代入y=(k≠0)中,得k=1,
故答案為:1.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合,需要掌握求函數(shù)圖象與坐標軸的交點坐標方法,三角形的中位線定理,待定系數(shù)法.本題的關(guān)鍵是求出C點坐標.16、y(x+)(x﹣)【解析】
先提取公因式y(tǒng)后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點睛】本題考查實數(shù)范圍內(nèi)的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內(nèi)進行因式分解的式子的結(jié)果一般要分到出現(xiàn)無理數(shù)為止.17、1-1.【解析】
將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點睛】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過勾股定理找出方程是解題的關(guān)鍵.18、b<9【解析】
由方程有兩個不相等的實數(shù)根結(jié)合根的判別式,可得出,解之即可得出實數(shù)b的取值范圍.【詳解】解:方程有兩個不相等的實數(shù)根,
,
解得:.【點睛】本題考查的知識點是根的判別式,解題關(guān)鍵是牢記“當(dāng)時,方程有兩個不相等的實數(shù)根”.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解析】
(1)求出∠PBO+∠PDO=180°,根據(jù)角平分線定義得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根據(jù)平行線的性質(zhì)得出即可;
(2)求出∠ABO=∠PDA,根據(jù)角平分線定義得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根據(jù)垂直定義得出即可;
(3)分為兩種情況:根據(jù)三角形面積公式求出即可.【詳解】(1)證明:如圖1.
∵在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),
∴∠AOB=90°.
∵DP⊥AB于點P,
∴∠DPB=90°,
∵在四邊形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直線DF與CB的位置關(guān)系是:DF⊥CB,
證明:延長DF交CB于點Q,如圖2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:過M作MN⊥y軸于N,
∵M(4,-1),
∴MN=4,ON=1,
當(dāng)E在y軸的正半軸上時,如圖3,
∵△MCE的面積等于△BCO面積的倍時,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
當(dāng)E在y軸的負半軸上時,如圖4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐標是(0,)或(0,-).【點睛】本題考查了平行線的性質(zhì)和判定,三角形內(nèi)角和定理,坐標與圖形性質(zhì),三角形的面積的應(yīng)用,題目綜合性比較強,有一定的難度.20、【解析】【分析】列表得出所有等可能結(jié)果,然后根據(jù)概率公式列式計算即可得解【詳解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9種等可能結(jié)果,其中抽出的兩張卡片上的圖案都是“金魚”的4種結(jié)果,所以抽出的兩張卡片上的圖案都是“金魚”的概率為.【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】試題分析:(1)將B坐標代入反比例解析式中求出m的值,即可確定出反比例解析式;將A坐標代入反比例解析式求出n的值,確定出A的坐標,將A與B坐標代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;(2)對于直線AB,令y=0求出x的值,即可確定出C坐標,三角形AOB面積=三角形AOC面積+三角形BOC面積,求出即可;(3)由兩函數(shù)交點A與B的橫坐標,利用圖象即可求出所求不等式的解集.試題解析:(1)∵B(2,﹣4)在y=上,∴m=﹣1.∴反比例函數(shù)的解析式為y=﹣.∵點A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b經(jīng)過A(﹣4,2),B(2,﹣4),∴,解之得.∴一次函數(shù)的解析式為y=﹣x﹣2.(2)∵C是直線AB與x軸的交點,∴當(dāng)y=0時,x=﹣2.∴點C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.(3)不等式的解集為:﹣4<x<0或x>2.22、(1)證明見解析(2)【解析】
(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據(jù)勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【點睛】本題考核知識點:切線性質(zhì),銳角三角函數(shù)的應(yīng)用.解題關(guān)鍵點:由全等三角形性質(zhì)得到線段相等,根據(jù)直角三角形性質(zhì)得到相應(yīng)等式.23、(1)說明見解析;(2)當(dāng)∠B=30°時,四邊形ACEF是菱形.理由見解析.【解析】試題分析:(1)證明△AEC≌△EAF,即可得到EF=CA,根據(jù)兩組對邊分別相等的四邊形是平行四邊形即可判斷;(2)當(dāng)∠B=30°時,四邊形ACEF是菱形.根據(jù)直角三角形的性質(zhì),即可證得AC=EC,根據(jù)菱形的定義即可判斷.(1)證明:由題意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四邊形ACEF是平行四邊形.(2)解:當(dāng)∠B=30°時,四邊形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位線,∴E是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年中國郵政儲蓄銀行股份有限公司普洱市分行招聘見習(xí)人員(10人)參考考試題庫附答案解析
- 塑膠顏料生產(chǎn)管理制度
- 企業(yè)安全生產(chǎn)變更制度
- 食品生產(chǎn)經(jīng)營記錄制度
- 養(yǎng)雞場生產(chǎn)安全管理制度
- 2026浙江臺州市溫嶺市濱海交警中隊面向社會招聘警務(wù)輔助人員1人備考考試題庫附答案解析
- 安全生產(chǎn)宣教工作制度
- 豐田CE生產(chǎn)制度
- 安全生產(chǎn)專家檢查制度
- 旅館安全生產(chǎn)管理制度
- 外賬會計外賬協(xié)議書
- 急性呼吸窘迫綜合征ARDS教案
- 實驗室質(zhì)量控制操作規(guī)程計劃
- 骨科手術(shù)術(shù)前宣教
- 【語文】青島市小學(xué)三年級上冊期末試卷(含答案)
- 2025版壓力性損傷預(yù)防和治療的新指南解讀
- 2025年新疆第師圖木舒克市公安局招聘警務(wù)輔助人員公共基礎(chǔ)知識+寫作綜合練習(xí)題及答案
- 2026年春節(jié)放假通知模板范文
- 2025年高考真題分類匯編必修三 《政治與法治》(全國)(解析版)
- 現(xiàn)代服務(wù)業(yè)勞動課件
- 云倉基礎(chǔ)知識培訓(xùn)課件
評論
0/150
提交評論