版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若2m﹣n=6,則代數(shù)式m-n+1的值為()A.1 B.2 C.3 D.42.某服裝店用10000元購進(jìn)一批某品牌夏季襯衫若干件,很快售完;該店又用14700元錢購進(jìn)第二批這種襯衫,所進(jìn)件數(shù)比第一批多40%,每件襯衫的進(jìn)價比第一批每件襯衫的進(jìn)價多10元,求第一批購進(jìn)多少件襯衫?設(shè)第一批購進(jìn)x件襯衫,則所列方程為()A.﹣10= B.+10=C.﹣10= D.+10=3.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()
A.30 B.27 C.14 D.324.如圖,⊙O中,弦BC與半徑OA相交于點D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數(shù)是()A.25° B.27.5° C.30° D.35°5.四根長度分別為3,4,6,x(x為正整數(shù))的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為166.如圖,一次函數(shù)和反比例函數(shù)的圖象相交于,兩點,則使成立的取值范圍是()A.或 B.或C.或 D.或7.下列計算結(jié)果等于0的是()A. B. C. D.8.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.9.如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.10.一次數(shù)學(xué)測試后,隨機抽取九年級某班5名學(xué)生的成績?nèi)缦拢?1,78,1,85,1.關(guān)于這組數(shù)據(jù)說法錯誤的是()A.極差是20 B.中位數(shù)是91 C.眾數(shù)是1 D.平均數(shù)是9111.已知點M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)12.下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC的面積為6,平行于BC的兩條直線分別交AB,AC于點D,E,F(xiàn),G.若AD=DF=FB,則四邊形DFGE的面積為_____.14.化簡:12+31315.如圖,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延長線于點F,若AD=1,BD=2,BC=4,則EF=________.16.已知⊙O的面積為9πcm2,若點O到直線L的距離為πcm,則直線l與⊙O的位置關(guān)系是_____.17.同時拋擲兩枚質(zhì)地均勻的骰子,則事件“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率是.18.拋物線y=(x﹣2)2﹣3的頂點坐標(biāo)是____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.證明:DE為⊙O的切線;連接OE,若BC=4,求△OEC的面積.20.(6分)如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,∠DEB=30°,求弦CD長.21.(6分)“綠水青山就是金山銀山”,北京市民積極參與義務(wù)植樹活動.小武同學(xué)為了了解自己小區(qū)300戶家庭在2018年4月份義務(wù)植樹的數(shù)量,進(jìn)行了抽樣調(diào)查,隨即抽取了其中30戶家庭,收集的數(shù)據(jù)如下(單位:棵):112323233433433534344545343456(1)對以上數(shù)據(jù)進(jìn)行整理、描述和分析:①繪制如下的統(tǒng)計圖,請補充完整;②這30戶家庭2018年4月份義務(wù)植樹數(shù)量的平均數(shù)是______,眾數(shù)是______;(2)“互聯(lián)網(wǎng)+全民義務(wù)植樹”是新時代首都全民義務(wù)植樹組織形式和盡責(zé)方式的一大創(chuàng)新,2018年首次推出義務(wù)植樹網(wǎng)上預(yù)約服務(wù),小武同學(xué)所調(diào)查的這30戶家庭中有7戶家庭采用了網(wǎng)上預(yù)約義務(wù)植樹這種方式,由此可以估計該小區(qū)采用這種形式的家庭有______戶.22.(8分)閱讀與應(yīng)用:閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當(dāng)a=b時取等號).閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知:,所以當(dāng)即時,函數(shù)的最小值為.閱讀理解上述內(nèi)容,解答下列問題:問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時,周長的最小值為__________.問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時,的最小值為__________.問題3:某民辦學(xué)習(xí)每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學(xué)生生活費每人10元;三是其他費用.其中,其他費用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.1.當(dāng)學(xué)校學(xué)生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學(xué)生人數(shù))23.(8分)如圖,在平行四邊形ABCD中,DB⊥AB,點E是BC邊的中點,過點E作EF⊥CD,垂足為F,交AB的延長線于點G.(1)求證:四邊形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.24.(10分)某商店準(zhǔn)備購進(jìn)甲、乙兩種商品.已知甲商品每件進(jìn)價15元,售價20元;乙商品每件進(jìn)價35元,售價45元.(1)若該商店同時購進(jìn)甲、乙兩種商品共100件,恰好用去2700元,求購進(jìn)甲、乙兩種商品各多少件?(2)若該商店準(zhǔn)備用不超過3100元購進(jìn)甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應(yīng)該怎樣進(jìn)貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進(jìn)價)25.(10分)計算:27﹣(﹣2)0+|1﹣3|+2cos30°.26.(12分)正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.問題出現(xiàn):(1)當(dāng)點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為;題探究:(2)①當(dāng)點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為;②當(dāng)點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.27.(12分)先化簡,再求值:,其中a是方程a2+a﹣6=0的解.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進(jìn)行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當(dāng)2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數(shù)式,解題的關(guān)鍵是掌握整體代入法.2、B【解析】
根據(jù)題意表示出襯衫的價格,利用進(jìn)價的變化得出等式即可.【詳解】解:設(shè)第一批購進(jìn)x件襯衫,則所列方程為:+10=.故選B.【點睛】此題主要考查了由實際問題抽象出分式方程,正確找出等量關(guān)系是解題關(guān)鍵.3、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關(guān)鍵.4、D【解析】分析:直接利用三角形外角的性質(zhì)以及鄰補角的關(guān)系得出∠B以及∠ODC度數(shù),再利用圓周角定理以及三角形內(nèi)角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點睛:此題主要考查了圓周角定理以及三角形內(nèi)角和定理等知識,正確得出∠AOC度數(shù)是解題關(guān)鍵.5、D【解析】
首先寫出所有的組合情況,再進(jìn)一步根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當(dāng)三邊為3、4、1時,其周長為3+4+1=13;②當(dāng)x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當(dāng)x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.【點睛】本題考查的是三角形三邊關(guān)系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關(guān)鍵.6、B【解析】
根據(jù)圖象找出一次函數(shù)圖象在反比例函數(shù)圖象上方時對應(yīng)的自變量的取值范圍即可.【詳解】觀察函數(shù)圖象可發(fā)現(xiàn):或時,一次函數(shù)圖象在反比例函數(shù)圖象上方,∴使成立的取值范圍是或,故選B.【點睛】本題考查了反比例函數(shù)與一次函數(shù)綜合,函數(shù)與不等式,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.7、A【解析】
各項計算得到結(jié)果,即可作出判斷.【詳解】解:A、原式=0,符合題意;
B、原式=-1+(-1)=-2,不符合題意;
C、原式=-1,不符合題意;
D、原式=-1,不符合題意,
故選:A.【點睛】本題考查了有理數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.8、A【解析】
畫出從正面看到的圖形即可得到它的主視圖.【詳解】這個幾何體的主視圖為:故選:A.【點睛】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進(jìn),通過仔細(xì)觀察和想象,再畫它的三視圖.9、D【解析】
連接EB,設(shè)圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長度,最后勾股定理即可求出CE的長度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設(shè)⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識,綜合程度較高,屬于中等題型.10、D【解析】
試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數(shù)為91,所以B選項正確;因為1出現(xiàn)了兩次,最多,所以眾數(shù)是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數(shù)②中位數(shù)③平均數(shù)④極差.11、A【解析】因為點M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個答案中只有A符合條件.故選A12、C【解析】試題分析:根據(jù)頂點式,即A、C兩個選項的對稱軸都為x=2,再將(0,1)代入,符合的式子為C選項考點:二次函數(shù)的頂點式、對稱軸點評:本題考查學(xué)生對二次函數(shù)頂點式的掌握,難度較小,二次函數(shù)的頂點式解析式為y=(x-a)2+h,頂點坐標(biāo)為二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】
先根據(jù)題意可證得△ABC∽△ADE,△ABC∽△AFG,再根據(jù)△ABC的面積為6分別求出△ADE與△AFG的面積,則四邊形DFGE的面積=S△AFG-S△ADE.【詳解】解:∵DE∥BC,,
∴△ADE∽△ABC,∵AD=DF=FB,
∴=()1,即=()1,∴S△ADE=;∵FG∥BC,∴△AFG∽△ABC,
=()1,即=()1,∴S△AFG=;∴S四邊形DFGE=S△AFG-S△ADE=-=1.故答案為:1.【點睛】本題考查了相似三角形的性質(zhì)與應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的性質(zhì)與應(yīng)用.14、3【解析】試題分析:先進(jìn)行二次根式的化簡,然后合并,可得原式=23+3=33.15、【解析】
由DE∥BC可得出△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)和平行線的性質(zhì)解答即可.【詳解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案為.【點睛】此題考查相似三角形的判定和性質(zhì),關(guān)鍵是由DE∥BC可得出△ADE∽△ABC.16、相離【解析】
設(shè)圓O的半徑是r,根據(jù)圓的面積公式求出半徑,再和點0到直線l的距離π比較即可.【詳解】設(shè)圓O的半徑是r,則πr2=9π,∴r=3,∵點0到直線l的距離為π,∵3<π,即:r<d,∴直線l與⊙O的位置關(guān)系是相離,故答案為:相離.【點睛】本題主要考查對直線與圓的位置關(guān)系的理解和掌握,解此題的關(guān)鍵是知道當(dāng)r<d時相離;當(dāng)r=d時相切;當(dāng)r>d時相交.17、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結(jié)果數(shù),其中“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的結(jié)果數(shù)為9,所以“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率==.故答案為.考點:列表法與樹狀圖法.18、(2,﹣3)【解析】
根據(jù):對于拋物線y=a(x﹣h)2+k的頂點坐標(biāo)是(h,k).【詳解】拋物線y=(x﹣2)2﹣3的頂點坐標(biāo)是(2,﹣3).故答案為(2,﹣3)【點睛】本題考核知識點:拋物線的頂點.解題關(guān)鍵點:熟記求拋物線頂點坐標(biāo)的公式.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)【解析】試題分析:(1)首先連接OD,CD,由以BC為直徑的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角為30°,可得AD=BD,即可證得OD∥AC,繼而可證得結(jié)論;(2)首先根據(jù)三角函數(shù)的性質(zhì),求得BD,DE,AE的長,然后求得△BOD,△ODE,△ADE以及△ABC的面積,繼而求得答案.試題解析:(1)證明:連接OD,CD,∵BC為⊙O直徑,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D點在⊙O上,∴DE為⊙O的切線;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC?cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB?CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD?cos30°=3,∴S△ODE=OD?DE=×2×=,S△ADE=AE?DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.20、2【解析】試題分析:過O作OF垂直于CD,連接OD,利用垂徑定理得到F為CD的中點,由AE+EB求出直徑AB的長,進(jìn)而確定出半徑OA與OD的長,由OA﹣AE求出OE的長,在直角三角形OEF中,利用30°所對的直角邊等于斜邊的一半求出OF的長,在直角三角形ODF中,利用勾股定理求出DF的長,由CD=2DF即可求出CD的長.試題解析:過O作OF⊥CD,交CD于點F,連接OD,∴F為CD的中點,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根據(jù)勾股定理得:DF=OD2-O則CD=2DF=215.考點:垂徑定理;勾股定理.21、(1)3.4棵、3棵;(2)1.【解析】
(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,據(jù)此補全圖形可得;②根據(jù)平均數(shù)和眾數(shù)的定義求解可得;(2)用總戶數(shù)乘以樣本中采用了網(wǎng)上預(yù)約義務(wù)植樹這種方式的戶數(shù)所占比例可得.【詳解】解:(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,補全圖形如下:②這30戶家庭2018年4月份義務(wù)植樹數(shù)量的平均數(shù)是(棵),眾數(shù)為3棵,故答案為:3.4棵、3棵;(2)估計該小區(qū)采用這種形式的家庭有戶,故答案為:1.【點睛】此題考查條形統(tǒng)計圖,加權(quán)平均數(shù),眾數(shù),解題關(guān)鍵在于利用樣本估計總體.22、問題1:28問題2:38問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,依題意得:,因為x>0,所以,當(dāng)即x=800時,y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800人時,該校每天生均投入最低,最低費用是2元.【解析】試題分析:問題1:當(dāng)時,周長有最小值,求x的值和周長最小值;問題2:變形,由當(dāng)x+1=時,的最小值,求出x值和的最小值;問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,根據(jù)生均投入=支出總費用÷學(xué)生人數(shù),列出關(guān)系式,根據(jù)前兩題解法,從而求解.試題解析:問題1:∵當(dāng)(x>0)時,周長有最小值,∴x=2,∴當(dāng)x=2時,有最小值為=3.即當(dāng)x=2時,周長的最小值為2×3=8;問題2:∵y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),∴,∵當(dāng)x+1=(x>-1)時,的最小值,∴x=3,∴x=3時,有最小值為3+3=8,即當(dāng)x=3時,的最小值為8;問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,則生均投入y元,依題意得,因為x>0,所以,當(dāng)即x=800時,y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800時,該校每天生均投入最低,最低費用是2元.23、(1)見解析;(2)【解析】
(1)根據(jù)矩形的判定證明即可;(2)根據(jù)平行四邊形的性質(zhì)和等邊三角形的性質(zhì)解答即可.【詳解】證明:(1)∵BD⊥AB,EF⊥CD,∴∠ABD=90°,∠EFD=90°,根據(jù)題意,在?ABCD中,AB∥CD,∴∠BDC=∠ABD=90°,∴BD∥GF,∴四邊形BDFG為平行四邊形,∵∠BDC=90°,∴四邊形BDFG為矩形;(2)∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BA=BE,∵在Rt△BCD中,點E為BC邊的中點,∴BE=ED=EC,∵在?ABCD中,AB=CD,∴△ECD為等邊三角形,∠C=60°,∴,∴.【點睛】本題考查了矩形的判定、等邊三角形的判定和性質(zhì),根據(jù)平行四邊形的性質(zhì)和等邊三角形的性質(zhì)解答是解題關(guān)鍵.24、(1)商店購進(jìn)甲種商品40件,購進(jìn)乙種商品60件;(2)應(yīng)購進(jìn)甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【解析】
(1)設(shè)購進(jìn)甲、乙兩種商品分別為x件與y件,根據(jù)甲種商品件數(shù)+乙種商品件數(shù)=100,甲商品的總進(jìn)價+乙種商品的總進(jìn)價=2700,列出關(guān)于x與y的方程組,求出方程組的解即可得到x與y的值,得到購進(jìn)甲、乙兩種商品的件數(shù);(2)設(shè)商店購進(jìn)甲種商品a件,則購進(jìn)乙種商品(100-a)件,根據(jù)甲商品的總進(jìn)價+乙種商品的總進(jìn)價小于等于3100,甲商品的總利潤+乙商品的總利潤大于等于890列出關(guān)于a的不等式組,求出不等式組的解集,得到a的取值范圍,根據(jù)a為正整數(shù)得出a的值,再表示總利潤W,發(fā)現(xiàn)W與a成一次函數(shù)關(guān)系式,且為減函數(shù),故a取最小值時,W最大,即可求出所求的進(jìn)貨方案與最大利潤.【詳解】(1)設(shè)購進(jìn)甲種商品x件,購進(jìn)乙商品y件,根據(jù)題意得:,解得:,答:商店購進(jìn)甲種商品40件,購進(jìn)乙種商品60件;(2)設(shè)商店購進(jìn)甲種商品a件,則購進(jìn)乙種商品(100﹣a)件,根據(jù)題意列得:,解得:20≤a≤22,∵總利潤W=5a+10(100﹣a)=﹣5a+1000,W是關(guān)于a的一次函數(shù),W隨a的增大而減小,∴當(dāng)a=20時,W有最大值,此時W=900,且100﹣20=80,答:應(yīng)購進(jìn)甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【點睛】此題考查了二元一次方程組的應(yīng)用,一次函數(shù)的性質(zhì),以及一元一次不等式組的應(yīng)用,弄清題中的等量關(guān)系及不等關(guān)系是解本題的關(guān)鍵.25、53【解析】
(1)原式利用二次根式的性質(zhì),零指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值進(jìn)行化簡即可得到結(jié)果.【詳解】原式=33=33=53【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.26、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解析】
(1)根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;(2)①根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;②根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水電開槽施工方案(3篇)
- 連合廠家活動策劃方案(3篇)
- 肥料捐贈活動方案策劃(3篇)
- 超市活動文案策劃方案(3篇)
- 2025年智能化系統(tǒng)設(shè)計與實施指南
- 2025年高職特種動物養(yǎng)殖技術(shù)(兔子養(yǎng)殖管理)試題及答案
- 2025年中職植物保護(植物病蟲害基礎(chǔ))試題及答案
- 2025年中職(林業(yè)技術(shù))林木種苗培育基礎(chǔ)試題及答案
- 2025年高職餐飲智能管理(菜單設(shè)計)試題及答案
- 2025年高職本科(資源勘查工程技術(shù))地質(zhì)勘探技術(shù)階段測試題及答案
- 《特種水產(chǎn)養(yǎng)殖學(xué)》-3兩棲爬行類養(yǎng)殖
- 臨安區(qū)露營地管理辦法
- 監(jiān)獄企業(yè)車輛管理辦法
- DB5101∕T 213-2025 公園城市濱水綠地鳥類棲息地植物景觀營建指南
- 軍事體能培訓(xùn)課件
- 全麻剖宮產(chǎn)麻醉專家共識
- 產(chǎn)線協(xié)同管理制度
- 災(zāi)害應(yīng)急響應(yīng)路徑優(yōu)化-洞察及研究
- T/CAQI 96-2019產(chǎn)品質(zhì)量鑒定程序規(guī)范總則
- 2025既有建筑改造利用消防設(shè)計審查指南
- 化學(xué)-湖南省永州市2024-2025學(xué)年高二上學(xué)期1月期末試題和答案
評論
0/150
提交評論