一種提取聲波測井頻散波相慢度的適應(yīng)函數(shù)方法_第1頁
一種提取聲波測井頻散波相慢度的適應(yīng)函數(shù)方法_第2頁
一種提取聲波測井頻散波相慢度的適應(yīng)函數(shù)方法_第3頁
一種提取聲波測井頻散波相慢度的適應(yīng)函數(shù)方法_第4頁
一種提取聲波測井頻散波相慢度的適應(yīng)函數(shù)方法_第5頁
免費預(yù)覽已結(jié)束,剩余2頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

一種提取聲波測井頻散波相慢度的適應(yīng)函數(shù)方法Abstract

Inthispaper,weproposeanadaptivefunctionmethodforextractingdispersionwavephaseslownessfromsonicloggingdata.Unliketraditionalmethodsthatrelyonparametricmodels,theadaptivefunctionmethodismodel-freeanddoesnotmakeanyassumptionsaboutthefunctionalformofthedispersioncurve.Themethodisbasedonanoptimizationapproachthatminimizesthemisfitbetweentheobservedsonicwaveformandasetofadaptivelychosenbasisfunctions.Wedemonstratetheeffectivenessofthemethodonbothsyntheticandrealdataexamples.

Introduction

Sonicloggingisawidelyusedgeophysicaltechniqueformeasuringthespeedofsoundinrocksandothermaterials.Thebasicprincipleofsonicloggingistotransmitasoundwaveintotheformationandmeasurethetimeittakesforthewavetotravelacertaindistance.Byanalyzingthewaveformsobtainedfromtheloggingtool,variouspropertiesofthesubsurfacecanbeinferred,includinglithology,porosity,andfluidcontent.

Oneimportantparameterthatcanbederivedfromsoniclogsisthedispersioncurve,whichrelatesthephasevelocityofthesoundwavetoitsfrequency.Thedispersioncurvecanprovidevaluableinformationaboutthesubsurface,suchasthepresenceoffracturesorothergeologicalstructures.However,extractingthedispersioncurvefromsonicloggingdataisachallengingproblem,asthewaveformcanbeaffectedbyvariousfactors,suchasattenuation,scattering,andboreholerugosity.

Traditionally,thedispersioncurveisobtainedbyfittingaparametricmodeltotheobservedwaveform.Thisrequiresmakingassumptionsabouttheunderlyingphysicalprocesses,suchasthenatureofthewavepropagationandthescatteringmechanisms.However,theseassumptionsmaynotbevalidinallcases,leadingtoinaccurateestimatesofthedispersioncurve.

Recently,therehasbeengrowinginterestindevelopingmodel-freemethodsforextractingthedispersioncurvefromsonicdata.Thesemethodsaimtoavoidtheneedforassumptionsaboutthefunctionalformofthedispersioncurve,andinsteadrelyondata-drivenapproachesthatarerobusttonoiseandothersourcesofuncertainty.

Inthispaper,weproposeanadaptivefunctionmethodforextractingthedispersioncurvefromsonicloggingdata.Themethodisbasedonanoptimizationapproachthatminimizesthemisfitbetweentheobservedwaveformandasetofadaptivelychosenbasisfunctions.Unliketraditionalmethods,theadaptivefunctionmethoddoesnotrequireaparametricmodel,andcanaccommodatecomplexdispersioncurvesthatmaynotbewell-describedbysimplefunctionalforms.

Methodology

Theadaptivefunctionmethodisbasedonthefollowingoptimizationproblem:

minimize||f(t)-g(t)||^2

subjectto:s_m<=s<=s_M

wheref(t)istheobservedsonicwaveform,g(t)=A(s)exp(-iωt+iφ(s))isacomplex-valuedfunctionthatrepresentsthedispersionwaveatfrequencyω,A(s)istheamplitudeofthedispersionwave,φ(s)isthephaseofthedispersionwave,andsisthephaseslownessofthedispersionwave.Thephaseslownessisdefinedass=dω/dk,wherekisthewavenumber.Theparameters_mands_Marethelowerandupperboundsonthephaseslowness,respectively.

TheoptimizationproblemissolvedbyusingavariantoftheLevenberg-Marquardtalgorithm,whichisawidelyusedmethodfornonlinearleast-squaresproblems.Inourimplementation,weuseamodifiedversionofthealgorithmthatallowsfornon-smoothobjectivefunctions,whichisnecessaryforourmethodsincethebasisfunctionsarenotnecessarilysmooth.

Thebasisfunctionsusedinthemethodareconstructedadaptively,basedontheobservedwaveform.Specifically,weuseagreedyalgorithmthatselectsbasisfunctionsfromadictionaryoffunctions,suchthattheresidualerrorisminimizedateachiteration.

Results

Wedemonstratetheeffectivenessoftheadaptivefunctionmethodonbothsyntheticandrealdataexamples.Inthesyntheticdataexample,wesimulateawaveformwithaknowndispersioncurve,andshowthattheadaptivefunctionmethodisabletoaccuratelyrecoverthedispersioncurve.Intherealdataexample,weusedatafromawellintheGulfofMexico,andshowthatthemethodisabletodetectthepresenceofafracturezonethatisnotvisibleintheconventionalsoniclogs.

Conclusions

Wehavepresentedanadaptivefunctionmethodforextractingthedispersioncurvefromsonicloggingdata.Themethodismodel-freeanddoesnotrequireanyassumptionsaboutthefunctionalformofthedispersioncurve.Themethodisbasedonanoptimizationapproachthatminimizesthemisfitbetweentheobservedwaveformandasetofadaptivelychosenbasisfunctions.Wehavedemonstratedtheeffectivenessofthemethodonbothsyntheticandrealdataexamples,andshownthatitisabletodetectthepresenceofgeologicalstructuresthatarenotvisibleinconventionalsoniclogs.Theproposedmethodhasthepotentialtoimproveourunderstandingofthesubsurfacebyprovidingmoreaccurateandreliableinformationaboutthegeologicalproperties.Comparedtotraditionalmethods,theadaptivefunctionmethodhasseveraladvantages.First,itdoesnotrelyonaprioriassumptionsaboutthefunctionalformofthedispersioncurve,whichmakesitmorerobusttonoiseandothersourcesofuncertainty.Second,itcanaccommodatecomplexdispersioncurvesthatmaynotbewell-describedbysimpleparametricmodels.Third,itcandetectandquantifygeologicalstructuresthatarenotvisibleinconventionalsoniclogs,suchasfracturezonesandotherdiscontinuities.

However,therearealsosomelimitationstotheadaptivefunctionmethod.Onelimitationisthatitmayrequiremorecomputationalresourcesthantraditionalmethods,duetotheneedtosolveanonlinearoptimizationproblem.Anotherlimitationisthatitmaynotalwaysbepossibletoconstructanaccuratesetofbasisfunctions,particularlyincaseswherethewaveformishighlynon-stationaryorcontainssharpdiscontinuities.

Overall,theadaptivefunctionmethodisapromisingapproachforextractingthedispersioncurvefromsonicloggingdata.Furtherresearchisneededtoevaluateandoptimizethemethodundervariousconditionsandtocompareitsperformancetotraditionalmethods.Withcontinueddevelopmentandrefinement,theadaptivefunctionmethodhasthepotentialtoenhancetheaccuracyandreliabilityofsonicloggingdataforgeophysicalapplications.Inadditiontoitsadvantagesandlimitations,theadaptivefunctionmethodhasseveralpotentialapplicationsingeophysics.Oneapplicationisinthecharacterizationofsubsurfacereservoirsforhydrocarbonexplorationandproduction.Byaccuratelydeterminingthedispersioncurveofthesubsurfaceformations,itispossibletoestimatekeyreservoirpropertiessuchasporosityandpermeability,whicharecriticalforhydrocarbonrecovery.

Anotherpotentialapplicationisingeotechnicalengineering,particularlyfortheassessmentofsoilandrockpropertiesforinfrastructureprojectssuchastunnels,bridges,anddams.Thedispersioncurvecanprovideinformationontheelasticpropertiesofthesubsurfacematerials,whichcaninturnbeusedtoestimatetheirstrengthandstability.

Theadaptivefunctionmethodcanalsobeusedinconjunctionwithothergeophysicaltechniquessuchasseismicimagingandelectricalresistivitytomography.Bycombiningmultiplegeophysicaldatasets,itispossibletoobtainamorecomprehensivepictureofthesubsurfacestructuresandproperties.

Overall,theadaptivefunctionmethodisapromisingapproachforextractingthedispersioncurvefromsonicloggingdata,withpotentialapplicationsinvariousareasofgeophysics.Withfurtherdevelopmentandvalidation,itmaybecomeavaluabletoolfortheexplorationandcharacterizationofEarth'ssubsurface.Anotherpotentialapplicationoftheadaptivefunctionmethodisinearthquakeseismology.ByanalyzingthewavepropagationcharacteristicsofseismicwavesthroughEarth'scrustandmantle,itispossibletogaininsightsintothestructureandcompositionoftheinterior.Thedispersioncurvecanbeusedtodistinguishbetweendifferenttypesofseismicwavesandtoestimatetheirvelocities,whichcaninturnbeusedtoinferthecompositionandthermalpropertiesoftheunderlyingrocks.

Inaddition,theadaptivefunctionmethodcanbeappliedtomonitoringanddetectingchangesinsubsurfacepropertiesovertime.Forexample,itcanbeusedtotrackthemovementoffluidsthroughaporousmedium,suchasgroundwaterfloworoilmigration.Byanalyzingchangesinthedispersioncurve,itispossibletoidentifychangesinmaterialpropertiesandfluidsaturationovertime.

Lastly,theadaptivefunctionmethodcanbeusefulforgeophysicalimagingofsubsurfacestructures.Byanalyzingthedispersioncurveinmultiplelocations,itispossibletoconstructa2Dor3Dimageofthesubsurfacestructures,similartomedicalimagingtechniquessuchasCTscans.Thiscanbevaluableforarangeofa

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論