《計量經(jīng)濟學(xué)導(dǎo)論》cha_第1頁
《計量經(jīng)濟學(xué)導(dǎo)論》cha_第2頁
《計量經(jīng)濟學(xué)導(dǎo)論》cha_第3頁
《計量經(jīng)濟學(xué)導(dǎo)論》cha_第4頁
《計量經(jīng)濟學(xué)導(dǎo)論》cha_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Chapter19CarryingOutanEmpiricalProjectWooldridge:IntroductoryEconometrics:AModernApproach,5eGoalofthischapterLearnhowtocompleteatermproject/writeatermpaperPosingaquestionKnowingpreciselywhatquestionyouwanttoanswerisessentialYoucanonlycollectyourdataifyouexactlyknowyourquestionYoucanonlyknowwhetheryoucancompleteyourprojectintheallottedtimeifyouknowwhetherthenecessarydataisavailableYoucanonlyknowifyourresearchquestionisofinteresttosomeoneifyoucanpreciselystateitanddiscussitwithyourclassmates/instructorCarryingoutanEmpiricalProjectFindinginterestingresearchquestionsChoosetheareaofeconomics/socialsciencesyouareinterestedinExamplesfortypicalresearchquestionsLaborEconomics:ExplainingwagedifferentialsPublicEconomics:EffectoftaxesoneconomicactivityEducationEconomics:EffectofspendingonschoolperformanceMacroeconomics:EffectofinvestmentonGNPgrowthLookforpublishedpapersonthechosentopicusingtoolssuchasEconLit,GoogleScholar,theJournalofEconomicLiterature(JEL)etc.CarryingoutanEmpiricalProjectYourresearchprojectshouldaddsomethingnewAddanewvariablewhoseinfluencehasnotbeenstudiedbeforeExpandeconomicquestionstoincludefactorsfromothersciencesStudyanexistingquestionformorerecentdata(maybeboring)UseanewdatasetorstudyaquestionforadifferentcountryTryoutnew/alternativemethodstostudyanoldquestionFindacompletelynewquestion(hardbutpossible)IthelpsifyourresearchquestionispolicyrelevantoroflocalinterestCarryingoutanEmpiricalProjectLiteraturereviewAliteraturereviewisimportanttoplaceyourpaperintocontextUseonlinesearchservicestosystematicallysearchforliteratureWhensearching,thinkofrelatedtopicsthatmayalsoberelevantAliteraturereviewcanbepartofintroductionoraseparatesectionDatacollectionMostquestionscanbeaddressedusingalternativetypesofdata(purecross-sections,repeatedcross-sections,timeseries,panels)CarryingoutanEmpiricalProjectDecidingontheappropriatedatasetManyquestionscaninprinciplebestudiedusingasinglecross-sectionButforareasonableceterisparibusanalysisoneneedsenoughcontrolsPaneldataprovidesmorepossibilitiesforconvincingceterisparibusanalysesasonecancontrolfortime-invariantunobservedeffectsExamplesforpaneldatasets:PSID(individuals),Compustat(firms)Paneldataforcities,counties,statesetc.areoftenpubliclyavailableDatasetsareoftenavailableonline,injournalarchives,orfromauthorsCarryingoutanEmpiricalProjectEnteringandstoringyourdataDataformats:1)printed,2)ASCII,3)spreadsheet,4)softwarespecificImportantidentifiers:1)observationalunit,2)timeperiodTimeseriesmustbeorderedaccordingtotimeperiodPaneldataareconvenientlyorderedasblocksofindividualdataItisalwaysimportanttocorrectlyidentifyandhandlemissingvaluesNonnummericaldataalsohavetobehandledwithgreatcareSoftwarespecificformatsoftenprovidegoodwaysofdocumentationCarryingoutanEmpiricalProjectInspecting,cleaning,andsummarizingyourdataItisextremelyimportanttobecomefamiliarwithyourdatasetEvendatasetsthatwereusedbeforemaycontainproblems/errorsLookatindividualentries/trytounderstandthestructureofyourdataUnderstandhowmissingvaluesarecoded;iftheyarecodedas“999“or“-1“,thiscanbeextremelydangerousforyouranalysisItisbettertousenonnummericalvaluesformissingvaluesUnderstandtheunitsofmeasurementofyourvariablesCarryingoutanEmpiricalProjectInspecting,cleaning,andsummarizingyourdataKnowwhetheryourdataisreal/nominal,seasonallyadjusted/unadjustedCheckifmeans,std.dev.,mins,andmaxsofyourdataareplausibleCleanyourdataofimplausiblevaluesandobviouscodingerrorsWhenmakingdatatransformations(differencing,growthrates)makesureyourdataiscorrectlyorderedandnowrongoperationsresultForexample,inapaneldataset,beawarethatthefirstobservationofeachcross-sectionalunithasnopredecessorCarryingoutanEmpiricalProjectEconometricAnalysisGivenyourresearchquestionandthedataavailable,youhavetodecideontheappropriateeconometricmethodstouseSomegeneralguidelinesOLSisstillthemostwidelyusedmethodandoftenappropriateMakesurethekeyassumptionsaresatisfiedinyourmodelAlwayscheckforpossibleproblemsofomittedvariables,self-selection,measurementerror,andsimultaneityCarryingoutanEmpiricalProjectSomegeneralguidelinesCarefullychoosefunctionalformspecifications(logs,squaresetc.)Beginnersmistake:donotincludevariablesthatarelistedasnumericalvaluesbuthavenoquantitativemeaning(e.g.,3-digitoccupations)TransformsuchvariablestodummyvariablesrepresentingcategoriesHandleordinalregressorsinasimilarway(e.g.,jobsatisfaction)Forordinaldependentvariables,thereareorderedlogit/probitmodelsOnecanalsoreduceorderedvariablestobinaryvariablesCarryingoutanEmpiricalProjectSomegeneralguidelinesThinkofsecondarycomplicationssuchasheteroscedasticitySpecificproblemsintimeseriesregressions:1)levelsvs.differences,2)trendsandseasonality,3)unitrootsandcointegrationCarryoutmisspecificationtestsandthinkaboutpossiblebiasesSensitivityanalysis:lookatvariationsofyourspecification/methodHopefully,resultsdonotchangeinasubstantialwayArethereproblemswithoutliers/influentialobservations?CarryingoutanEmpiricalProjectSpecificaspectstothinkofwhenusingpaneldataKeyassumptionsRandomeffects:regressorsunrelatedtoindividualspecificeffectsFixedeffects:regressorsrelatedtoindividualspecificeffectsThefixedeffectsassumptionisoftenmoreconvincingContemporaneousexogeneity:idiosyncraticerrorsareuncorrelatedwiththeexplanatoryvariablesofthesametimeperiodStrictexogeneity:idiosyncraticerrorsareuncorrelatedwiththeexplanatoryvariablesofalltimeperiods(oftenproblematic)CarryingoutanEmpiricalProjectSpecificaspectstothinkofwhenusingpaneldataMethodsforpaneldataPooledOLS:randomeffectsassumption,serialcorrelationoferrorterms,needsonlycontemporaneousexogeneityRandomeffectsestimation:randomeffectsassumption,moreefficientthanpooledOLS,needsstrictexogeneityFixedeffectsestimation:fixedeffectsassumption,problemwithtimeinvariantregressors,needsstrictexogeneityFirstdifferencing:similartofixedeffects,goodforlongertimeseriesCarryingoutanEmpiricalProjectDatamining/specificationsearchesTheprocessoflookingforthebestmodeliscalledspecificationsearchOften,onestartswithageneralmodelanddropsinsignificantvariablesIfthespecificationsearchentailsmanysteps,thisisproblematicOurassumptionsactuallyrequirethatthemodelisonlyestimatedonceIfonesequentiallyestimatesanumberofmodelsonthesamedata,theresultingteststatisticsandp-valuescannotbeinterpretedanymoreThis(difficult)problemisoftenignoredinpracticeOneshouldkeepthenumberofspecificationstepstoaminimumCarryingoutanEmpiricalProjectWritinganempiricalpaperAsuccesfulempiricalpapercombinesacareful,convincingdataanalysiswithgoodexplanationsandaclearexpositionIntroductionStatebasicobjectivesandexplainwhythetopicisimportantLiteraturereview:Whathasbeendone?Howdoyouaddtothis?Grabthereader‘sattentionbypresentingsimplestatistics,paradoxicalevidence,topicalexamples,orchallengestocommonwisdomOnemaygiveashortsummaryofresultsintheintroductionCarryingoutanEmpiricalProjectConceptual(ortheoretical)frameworkDescriptionofgeneralapproachtoansweringyourresearchquestionYoumaydelevop/useaformaleconomicmodelforthisForexample,settingupautilitymaximizationmodelofcriminalactivityclarifiesthefactorsthatmatterforexplainingcriminalactivityHowever,oftencommoneconomicsensesufficestodiscussthemainmechanismsandcontrolvariablesthathavetobetakenintoaccountAsoneisinmostcasesinterestedinansweringacausalquestion,aconvincingdiscussionofwhatvariablestocontrolforisessentialCarryingoutanEmpiricalProjectEconometricmodelsandestimationmethodsSpecifythepopulationmodelyouhaveinmindExample:EffectsofalcoholconsumptiononcollegeGPAExample:Timeseriesmodelofcity-levelcartheftsExplainyourfunctionalformchoicesCarryingoutanEmpiricalProjectEconometricmodelsandestimationmethodsAfterspecifyingapopulationmodel,discussestimationmethodsDescribehowyoumeasurethevariablesinyourpopulationmodelWhenusingOLS:Discusswhyexogeneityassumptionshold,andhowyoudealwithheteroscedasticity,serialcorrelationandthelikeWhenusingIV/2SLS:Explainwhyyourinstrumentalvariablesfulfilltheassumptions:1)exclusion,2)exogeneity,3)partialcorrelationWhenusingpanelmethods:Explainwhattheunobservedindividualspecificeffectsstandfor,andhowtheyareremoved/accountedforCarryingoutanEmpiricalProjectDataCarefullydescribethedatausedinyourempiricalanalysisNamethesourcesofyourdataandhowtheycanbeobtainedTimeseriesdataandshortdatasetsmaybelistedintheappendixIfyourdataisself-collected,includeacopyofthequestionnaireDiscusstheunitsofmeasurementofthevariablesofinterestPresentsummarystatisticsforthevariablesusedintheanalysisFortrendingvariables,growthratesorgraphsaremoreappropriateAlwaysstatehowmanyobservationsyouusefordifferentestimationsCarryingoutanEmpiricalProjectResultsPresentestimatedequations,or,iftherearetoomany,presenttablesAlwaysincludethingslikeR-squaredandthenumberofobservationsAreyourestimatedcoefficientsstatisticallysignificant?Aretheyeconomicallysignificant?Whatistheirmagnitude?Ifcoefficientsdonothavetheexpectedsigns,thismayindicatethereisaspecificationproblem,forexample,omittedvariablesRelatedifferencesbetween

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論