分式方程的教學(xué)設(shè)計3篇_第1頁
分式方程的教學(xué)設(shè)計3篇_第2頁
分式方程的教學(xué)設(shè)計3篇_第3頁
分式方程的教學(xué)設(shè)計3篇_第4頁
分式方程的教學(xué)設(shè)計3篇_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1/1分式方程的優(yōu)秀教學(xué)設(shè)計3篇分式方程的優(yōu)秀教學(xué)設(shè)計1教學(xué)目標(biāo)

(一)知識與技能

理解分式方程與整式方程的區(qū)別,并掌握解分式方程的一般步驟。

(二)過程與方法

通過具體例子,讓學(xué)生**探索方程的解法,經(jīng)歷和體會解分式方程的必要步驟,使學(xué)生進(jìn)一步了解數(shù)學(xué)思想中的"轉(zhuǎn)化"思想。

(三)情感、態(tài)度與價值觀

培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗的良好習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。

教學(xué)重點:探索如何將分式方程轉(zhuǎn)化為整式方程并掌握解分式方程的一般步驟。

教學(xué)難點:探索分式方程產(chǎn)生增根的原因。

教學(xué)過程

一.創(chuàng)設(shè)情境,導(dǎo)入新課:

為幫助四川受災(zāi)的人們重建家園,某中學(xué)號召同學(xué)們自愿捐款。已知第一次捐款總額為2000元,第二次捐款總額為2150元,第二次捐款人數(shù)比第一次多15人,而且兩次人均捐款額恰好相等。

根據(jù)以上信息你能分別求出兩次捐款的人數(shù)嗎?

若設(shè)第一次捐款人數(shù)為X人,第二次捐款人數(shù)為()人。

根據(jù)相等關(guān)系列方程為()。

這個方程的分母中含有未知數(shù),與以前學(xué)過的方程不同,這就是我們這節(jié)課要學(xué)習(xí)的分式方程。(板書課題)

二.新課學(xué)習(xí):

(一).分式方程的定義:

分母中含有未知數(shù)的方程叫做分式方程

以前學(xué)過的像一元一次方程、二元一次方程等這類分母中不含有未知數(shù)的方程叫整式方程

反饋練習(xí)

(二).探索分式方程的解法

1.回顧整式方程的解法

解方程(解上面練習(xí)中的第三題)

師生共同回顧:解整式方程的步驟

(1)去分母,(2)去括號,(3)移項,(4)合并同類項,(5)化未知x的系數(shù)為1

2.如何解分式方程呢?

(學(xué)生嘗試完成,然后集體補(bǔ)充步驟)

解方程:2000∕X=2150/X+15

解:方程兩邊同時乘以X(X+15),得

2000(X+15)=2150X

解這個整式方程,得

x=200

則200+15=215

檢驗:把x=200代入原方程,

因為左邊=10右邊=10

所以左邊=右邊

所以x=200是原方程的解。

3.歸納解分式方程的步驟

一是去分母,二是解整式方程,三是檢驗

4.例題解方程:

(生**完成,師指導(dǎo))

分式方程的增根:不適合原方程的整式方程的根,叫原方程的增根。

師:解分式方程必須進(jìn)行檢驗!

[師]怎樣檢驗較簡單呢?還需要將整式方程的根分別代入原方程的左、右兩邊嗎?

[生]最簡單的檢驗方法是:把整式方程的根代入最簡公分母.若使最簡公分母為零,則是原方程的增根;若使最簡公分母不為零,則是原方程的根.是增根,必舍去。

三.應(yīng)用升華

四.小結(jié)

本節(jié)課我們學(xué)會了解分式方程,明白了解分式方程的三個步驟缺一不可,我明白了分式方程轉(zhuǎn)化為整式方程為什么會產(chǎn)生增根。

五.布置作業(yè):

本小節(jié)課時作業(yè)

教學(xué)反思

1.解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母

2.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。

分式方程的優(yōu)秀教學(xué)設(shè)計2教學(xué)目標(biāo)

(一)教學(xué)知識點

1、用分式方程的數(shù)學(xué)模型反映現(xiàn)實情境中的實際問題。

2、用分式方程來解決現(xiàn)實情境中的問題。

(二)能力訓(xùn)練要求

1、經(jīng)歷運用分式方程解決實際問題的過程,發(fā)展抽象概括、分析問題和解決問題的能力。

2、認(rèn)識運用方程解決實際問題的關(guān)鍵是審清題意,尋找等量關(guān)系,建立數(shù)學(xué)模型。

(三)情感與價值觀要求

1、經(jīng)歷建立分式方程模型解決實際問題的過程,體會數(shù)學(xué)模型的應(yīng)用價值,從而提高學(xué)習(xí)數(shù)學(xué)的興趣。

2、培養(yǎng)學(xué)生的創(chuàng)新精神,從中獲得成功的體驗。

教學(xué)重點

1、審明題意,尋找等量關(guān)系,將實際問題轉(zhuǎn)化成分式方程的數(shù)學(xué)模型。

2、根據(jù)實際意義檢驗解的合理性。

教學(xué)難點

尋求實際問題中的等量關(guān)系,尋求不同的解決問題的方法。

教具準(zhǔn)備

實物投影儀

投影片三張

第一張:做一做,(記作3、4、3A)

第二張:例3,(記作3、4、3B)

第三張:隨堂練習(xí)

教學(xué)過程

Ⅰ、提出問題,引入新課

[師]前兩節(jié)課,我們認(rèn)識了分式方程這樣的數(shù)學(xué)模型,并且學(xué)會了解分式方程。

接下來,我們就用分式方程解決生活中實際問題。

Ⅱ、講授新課

出示投影片(3、4、3A)

做一做

某單位將沿街的一部分房屋出租。每間房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年為9。6萬元,第二年為10。2萬元。

(1)你能找出這一情境的等量關(guān)系嗎?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論