分析法典型例題_第1頁
分析法典型例題_第2頁
分析法典型例題_第3頁
分析法典型例題_第4頁
分析法典型例題_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

解析法典型例題1.已知>>0,求證:a-b<-.a(chǎn)bab證明:a-b<a-b<=(a-b)2<-<=aba-2ab+b<a-b<=b<ab<=b<a<=b<a<0(已知條件).+112.設(shè)x,y∈R,且x+y=1,求證:1+x1+y≥9.11證明:1+x1+y≥9<=111+x1+1-x≥9<=x+12-x·1-x≥9<=2+x-x2x-x2≥9<=2+x-x2≥9x-9x2<=8x2-8x+2≥0<=(2x-1)2≥0此式顯然成立.1213.已知0<x<y,求證:y-y<x+1.11y證明:x+1>1=y(tǒng)+1<=y(tǒng)+1y>y-y2<=y(tǒng)+11>1-y<=y(tǒng)+11>1-y2<=y(tǒng)2>0<=y(tǒng)>0(已知條件).4.已知,,c是不全相等的正數(shù),求證:a+bc+bc+a+lg+lgc.lg+lg+lg>lgab222aba+bc+bc+a<=證明:lg2+lg2+lg>lga+lgb+lgc2a+bc+bc+babc)lg2·2·2>lg(<=+bc+bc+b2·2·2>abc<=+b≥ab,a++c≥bca22c≥ac,b2(三式等號不能夠同時成立)<=a,b,c為不全相等的正數(shù)(已知).22245.已知實數(shù)a,b,c滿足c<b<a,a+b+c=1,a+b+c=1,求證:1<a+b<3.證明:∵a+b+c=1,11<a+b<3?-3<c<0.又∵a2+b2+c2=1,∴(a+b)2-(a2+b2)=(1-c)2-(1-c2)c2c==-22而a+b=1-c,∴a,b是二次方程x2-(1-c)x+c2-c=0的兩個不等實根,從而,△=

(1-c)2-4(c2-c)>0,解得

-1<c<1.3又∵

c<b<a,(c-a)(c-b)>0,即c2-c(a+b)+ab=c2-c(1-c)+c2-c=3c2-2c>0,∴2c<0或c>(舍去).3∴1,即1<+<4.-3<c<0ab3xyxy6.可否存在常數(shù)c,使得不等式2x+y+x+2y≤c≤x+2y+2x+y對任意正數(shù)x,y恒成立?222解:令x=y(tǒng)=1,得3≤c≤3,∴c=3.下面給出證明:x+y≤2<=2+yx+2y3x3x(x+2)+3(2x+)≤2(x+2)(2x+)<=y(tǒng)yyyyx2+y2≥2xy(這個顯然成立).2x+y<=≤x+2x+y32y2(x+2y)(2x+y)≤3x(2x+y)+3y(x+2y)<=xy≤x2+y2(這個顯然成立).2綜上所述,c=.3+c=1,求證:3a+2+3b+2+3c+2≤33.7.已知a,b,c∈R,且a+b+證明:3a+2+3b+2+3c+2≤33<=(223a+2+3b+2+3c+2)≤(33)<=3a+2+3b+2+3c+2+23a+2·3b+2+3b+2·3c+2+3a+2·3c+2≤27<=23a+2·3b+2+3b+2·3c+2+3a+2·3c+2≤18.<=23a+2·3b+2+3b+2·3c+2+3a+2·3c+2≤6(a+b+c)+12,且a+b+c=1<==3a+2·3b+2≤(3a+2)+(3b+2),且3a+2·3c+2≤(3a+2)+(3c+2),且23b+2·3c+2≤(3b+2)+(3c+2).<=a,b,c∈R+.8.已知a>0,b>0,2c>a+b,求證:c-c2-ab<a<c+c2-ab.22證明:c-c-ab<a<c+c-ab<=|a-c|<c2-ab<=(a-c)2<c2-ab<=a2-2ac+c2<c2-ab<=2ac>a2+ab<=2c>a+b(已知).9.已知a,b,c∈R+,且ab+bc+ca=1,(1)求證:a+b+c≥3;證明a+b+c≥2+222ab+bc+ac)≥3<=(a+b+c)≥3,且a,b,c∈R<=a+b+c+2(3<=a2+b2+c2≥1=ab+bc+ca<=a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac.a(chǎn)bca+b+c).(2)求證:bc+ac+ab≥3(abca+b+c3證明∵bc+ac+ab=abc≥abc<=1a+b+c<=abcabc+bac+cab≤1=ab+bc+ca<=abc=ab·ac≤ab+acac=ab·bc≤ab+bc且cba=cb·ac≤cb+ac.2且b2210.已知,,,d都大于1,且log(bcd)≤9,求證:log+log+loga≥1.a(chǎn)bcdlogba+logca+logda≥1111證明<=logab+logac+logad≥1<=331≥1<=loga·loga·loga≤27<=logab·logac·logadbcdloga+loga+logad3loga()393logaaabc=bcd≤3=27<=b·logc·logd≤33a,b,c,d都大于1,且loga(bcd)≤9.11.已知函數(shù)f(x)=tanx,x∈π,若x,x∈π1)+f(x)]>fx1+x22222.1212121>fx1+x21x1+x2證明:2[f(x1)+f(x2)]2<=2(tanx1+tanx2)>tan2<=sinx1+x2x1+x2·cosx1+x2122122cosx12sin221sinxsinx1sinxcosx+sinx2+>12<=2cosx2cosx2>21+x2<=cosx1cosx2cosx+xcosx22=1sin(x1+2sin(x1+x2πx))2·cosx2cosx2>1+cos(x1+x2)<=1+cos(x1+x2)>2cosx1cosx2,且x1,x2∈0,2<=1+cosx1cosx2-sinx1sinx2>2cosx1cosx2<=1>cosx1cosx2+sinx1sinx2<=1>cos(x1-x2)<=x1≠x2.x,不等式3sinx12.求證:對任意實數(shù)2+cosx≤1恒成立.證明3sinx≤1<=|3sinx|≤|2+cosx|<=|3sinx|2≤|2+cosx|2<=2+cosx3sin2x≤4+4cosx+cos2x<=4cos2x+4cosx+1≥0<=(2cosx+1)2≥0恒成立.13.已知三角形三邊長為a,b,c,面積為S,求證:a2+b2+c2≥43S.證明a2b2c23S<=a2b2c2≥41sinC<=++≥4++32ab22212444222222222a+b+c≥432ab1-cosC<=a+b+c+2ab+2ac+2bc≥12ab(1-cosC)<=4+4+c4-1022+222+222≥-1222cos2C<=ababacbcab4+4+4-1022+22222≥-1222a2+b2-c22<=abcab+2bcabac2aba4+b4+c4-10a2b2+2a2c2+2b2c2≥-12a2b2a2+b2-c22<=2aba4+b4+c4-10a2b2+2a2c2+2b2c2≥-3(a4+b4+c4+2a2b2-2a2c2-2b2c2)<=2a4+2b4+2c4-2a2b2-2a2c2-2b2c2≥0<=(a2-b2)2+(b2-c2)2+(a2-c2)≥0.(-)2a+b(a-b)214.已知a>b>0,求證:ab<8a<2-8b.(a-b)2a+b(a-b)2(a-b)2a+b-2ab(a-b)2證明8<2-ab<8b<=8<2<8<=aab(a-)2(a-b)2(a-)2<=(a-)22(-)2b<<bb<(a-b<ab<=8a28b4a)4ba-ba-b<=a+ba+b<a-b<b2a<1<2b,且a-b>0<=2a211b1a11b11aba2+2a<1<2b+2<=2a<2<2b<=a<1<b<=b<a<=a>b>0.15.已知,,c+,求證:a4+b4+c4abacbc∈R≥++.a(chǎn)babccbaa4+b4+c4abacbca4+b4+c4a2b2+a2c2+b2c2證明abc≥c+b+a<=abc≥abc<=2a4+2b4+2c4-2a2b2-2a2c2-2b2c2≥0<=(a2-b2)2+(b2-c2)2+(a2-c2)≥0.16.已知||<1,||<1,求證:a+b<1.a(chǎn)b1+ab證明a+b<1<=|a+b<|1+ab<=|a+b2<|1+ab2<=1+ab||||a2+2ab+b2<1+2ab+a2b2<=a2b2-a2-b2+1>0<=(1-a2)(1-b2)>0<=1-a2>0且1-b2>0(或1-2<0且1-2<0)<=||<1,|b|<1.a(chǎn)ba17.已知,∈(0,+∞),且3+3=2,求證:+≤2.pqpqpq證明p+≤2<=+q)3≤23=8=2×4<=+)3≤(3+3)×4<=q(p(pqpqp3+3p2q+3pq2+q3≤4p3+4q3<=p3+q3-pq(p+q)≥0<=(+)(2-+2+≥0<=(p+q)(p-q2≥0<=,∈(0,+∞).pqppqq)-pq(pq))pq1118.已知x∈(0,+∞),求證:x+x-x+x+1≤2-3.11112證明x+x-x+x+1≤2-3<=x+x-x+x-1≤2-3<=2-1≤2-3,<=t+3≤2+2<=(t+3)222t-tt-1≤(2+t-1)<==32≤4(t2-1)<=t2≥4<=t≥2<=t=x+1≥2(x∈(0,+∞)).x19.已知a,b,c+,求證:log3(222-2log3(a+b+c)≥-1∈Ra+b+c)證明log3(a2+b2+c2)-2log3(++)≥-1<=log3(a2+b2+2)+1≥2log3(a++)<=abccbclog33(a2+b2+c2)≥log3(a+b+c)2且a,b,c∈R+<=3(a2+b2+c2)≥(a+b+c)2<=2a2+2b2+2c2≥2ab+2bc+2ac<=a2-2ab+b2+a2-2ac+c2+b2-2bc+c2≥0<=(a-b)2+(b-c)2+(a-c)2≥0.20.在銳角三角形ABC中,求證:11tanAtanB1+tanA+1+tanB<1+tanA+1+tanB.11tanAtanB證明1+tanA+1+tanB<1+tanA+1+tanB<=1A+11+tanA-11+tanB-11+tan1+tanB<1+tanA+1+tanB<=1A+1111+tan1+tanB<1-1+tanA+1-1+tanB<=22111+tanA+1+tanB<2<=1+tanA+1+tanB<1<=2+tan+tanB<1+tantan+tan+tanB<=AABAπ1<tanAtanB<=cotA<tanB<=tan2-A<tanB<=π-<B<=銳角三角形中,+>π.2221.已知,,c為三角形的三邊長,求證:a+b+c≥3.a(chǎn)bb+c-aa+c-ba+b-cabc證明b+c-a+a+c-b+a+b-c≥3<=2a+2b+2c≥6<=+-+c-+-cbcaabab222b+c-a+1+a+c-b+1+a+b-c+1≥9<=a++c+b+c++cb+c-a+a+c-b+a+b-c≥9<=111(a+b+c)b+c-a+a+c-b+a+b-c≥9<=[(b+c-a)+(a+c-b)+(a+b-c)]111b+c-a+a+c-b+a+b-c≥9<=(b+c-a)+(a+c-b)+(a+b-c)≥33(b+c-a)·(a+c-b)·(a+b-c)且1113111b+c-a+a+c-b+a+b-c≥3b+c-a·a+c-b·a+b-c<=b+->0,a+c->0,a+->0<=已知a,,c為三角形的三邊長.cabbcb+11722.已知a,b,∈R,且a+b=1,求證:ab+ab≥4.+1證明由a,b,∈R,且a+b=1知0<ab≤4.1171174(ab)2-17ab+4ab+ab≥4<=ab+ab-4≥0<=4ab≥0<=4(ab)2-17ab+4≥0<=(4ab-1)(ab-4)≥0<=0<ab≤1<4(已證).423.)(2011年高考全國卷理科壓軸題(1)設(shè)函數(shù)f(x)=ln(1+x)--2xx>0時,f(x)>0;,證明:當x+2(2)從編號1到100的100張卡片中每次隨機抽取一張,爾后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個號碼互不一樣樣的概率為p,證明:p<919110<e2.證明(1)∵f(x)=ln(1+x)-2x=ln(1+x)-2(x+2)-44x+=ln(1+x)-2+x+22x+2f′x14(x+2)2-4(1+x)x22>0(x>0),∴( )=-2=(1+x)(x+2)2=(1+x)(x+2)1+x(x+2)∴f(x)在(0,+∞)單調(diào)遞加,∴f(x)>f(0)=0.(2)易知p=100·99·98··8199·98··8110020=19.100919先證左端不等式<:p1091999·98··81901919p<10<=10019<100<=99·98·97··81<90<=19<=1999+98+97++81=90.99·98·97··81<9099·98·97··81<199191再證右端不等式10<e2:919191991021210<e2<=ln10<lne2<=19ln10<-lne<=ln

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論