版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
精品文檔-下載后可編輯可用于自動(dòng)駕駛領(lǐng)域的神經(jīng)網(wǎng)絡(luò)及深度學(xué)習(xí)-設(shè)計(jì)應(yīng)用CEVA汽車市場(chǎng)營(yíng)銷主管JeffVanWashenova
輔助駕駛系統(tǒng)(ADAS)可提供解決方案,用以滿足駕乘人員對(duì)道路安全及出行體驗(yàn)的更高要求。諸如車道偏離警告、自動(dòng)剎車及泊車輔助等系統(tǒng)廣泛應(yīng)用于當(dāng)前的車型,甚至是功能更為強(qiáng)大的車道保持、塞車輔助及自適應(yīng)巡航控制等系統(tǒng)的配套使用也讓未來(lái)的全自動(dòng)駕駛車輛成為現(xiàn)實(shí)。
如今,車輛的很多系統(tǒng)使用的都是機(jī)器視覺(jué)。機(jī)器視覺(jué)采用傳統(tǒng)信號(hào)處理技術(shù)來(lái)檢測(cè)識(shí)別物體。對(duì)于正熱衷于進(jìn)一步提高拓展ADAS功能的汽車制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開(kāi)辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動(dòng)駕駛儀的短時(shí)輔助模式到專職無(wú)人駕駛旅行的自動(dòng)駕駛,汽車制造業(yè)一直在尋求讓響應(yīng)速度更快、識(shí)別準(zhǔn)確度更高的方法,而深度學(xué)習(xí)技術(shù)無(wú)疑為其指明了道路。
以品牌為首的汽車制造業(yè)正在深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)技術(shù)上進(jìn)行投資,并向先進(jìn)的計(jì)算企業(yè)、硅谷等技術(shù)引擎及學(xué)術(shù)界看齊。在中國(guó),百度一直在此技術(shù)上保持。百度計(jì)劃在2022年將全自動(dòng)汽車投入商用,并加大全自動(dòng)汽車的批量生產(chǎn)力度,使其在2022年可廣泛投入使用。汽車制造業(yè)及技術(shù)領(lǐng)軍者之間的密切合作是嵌入式系統(tǒng)神經(jīng)網(wǎng)絡(luò)發(fā)展的催化劑。這類神經(jīng)網(wǎng)絡(luò)需要滿足汽車應(yīng)用環(huán)境對(duì)系統(tǒng)大小、成本及功耗的要求。
輕型嵌入式神經(jīng)網(wǎng)絡(luò)
卷積式神經(jīng)網(wǎng)絡(luò)(CNN)的應(yīng)用可分為三個(gè)階段:訓(xùn)練、轉(zhuǎn)化及CNN在生產(chǎn)就緒解決方案中的執(zhí)行。要想獲得一個(gè)高性價(jià)比、針對(duì)大規(guī)模車輛應(yīng)用的高效結(jié)果,必須在每階段使用為有利的系統(tǒng)。
訓(xùn)練往往在線下通過(guò)基于CPU的系統(tǒng)、圖形處理器(GPU)或現(xiàn)場(chǎng)可編程門陣列(FPGA)來(lái)完成。由于計(jì)算功能強(qiáng)大且設(shè)計(jì)人員對(duì)其很熟悉,這些是用于神經(jīng)網(wǎng)絡(luò)訓(xùn)練的為理想的系統(tǒng)。
在訓(xùn)練階段,開(kāi)發(fā)商利用諸如Caffe等的框架對(duì)CNN進(jìn)行訓(xùn)練及優(yōu)化。參考圖像數(shù)據(jù)庫(kù)用于確定網(wǎng)絡(luò)中神經(jīng)元的權(quán)重參數(shù)。訓(xùn)練結(jié)束即可采用傳統(tǒng)方法在CPU、GPU或FPGA上生成網(wǎng)絡(luò)及原型,尤其是執(zhí)行浮點(diǎn)運(yùn)算以確保的度。
作為一種車載使用解決方案,這種方法有一些明顯的缺點(diǎn)。運(yùn)算效率低及成本高使其無(wú)法在大批量量產(chǎn)系統(tǒng)中使用。
CEVA已經(jīng)推出了另一種解決方案。這種解決方案可降低浮點(diǎn)運(yùn)算的工作負(fù)荷,并在汽車應(yīng)用可接受的功耗水平上獲得實(shí)時(shí)的處理性能表現(xiàn)。隨著全自動(dòng)駕駛所需的計(jì)算技術(shù)的進(jìn)一步發(fā)展,對(duì)關(guān)鍵功能進(jìn)行加速的策略才能保證這些系統(tǒng)得到廣泛應(yīng)用。
利用被稱為CDNN的框架對(duì)網(wǎng)絡(luò)生成策略進(jìn)行改進(jìn)。經(jīng)過(guò)改進(jìn)的策略采用在高功耗浮點(diǎn)計(jì)算平臺(tái)上(利用諸如Caffe的傳統(tǒng)網(wǎng)絡(luò)生成器)開(kāi)發(fā)的受訓(xùn)網(wǎng)絡(luò)結(jié)構(gòu)和權(quán)重,并將其轉(zhuǎn)化為基于定點(diǎn)運(yùn)算,結(jié)構(gòu)緊湊的輕型的定制網(wǎng)絡(luò)模型。接下來(lái),此模型會(huì)在一個(gè)基于專門優(yōu)化的成像和視覺(jué)DSP芯片的低功耗嵌入式平臺(tái)上運(yùn)行。圖1顯示了輕型嵌入式神經(jīng)網(wǎng)絡(luò)的生成過(guò)程。與原始網(wǎng)絡(luò)相比,這種技術(shù)可在當(dāng)今量產(chǎn)型車輛的有限功率預(yù)算下帶來(lái)高性能的神經(jīng)處理表現(xiàn),而圖像識(shí)別度降低不到1%。
620)this.width=620;"data-ke-src="134533277.jpg"data-ke-onclick="window.open(this.src)"/>圖1.CDNN將通過(guò)傳統(tǒng)方法生成的網(wǎng)絡(luò)權(quán)重轉(zhuǎn)化為一個(gè)定點(diǎn)網(wǎng)絡(luò)
一個(gè)由低功耗嵌入式平臺(tái)托管的輸入大小為224x224、卷積過(guò)濾器分別為11x11、5x5及3x3的24層卷積神經(jīng)網(wǎng)絡(luò),其性能表現(xiàn)幾乎是一個(gè)在典型的GPU/CPU綜合處理引擎上運(yùn)行的類似CNN的三倍,盡管其所需的內(nèi)存帶寬只是后者的五分之一且功耗大幅降低。
下一代深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)
汽車制造業(yè)進(jìn)入神經(jīng)網(wǎng)絡(luò)領(lǐng)域所習(xí)得的經(jīng)驗(yàn)不斷推動(dòng)技術(shù)的發(fā)展,并因此開(kāi)發(fā)出了更先進(jìn)的網(wǎng)絡(luò)架構(gòu)及更復(fù)雜的拓?fù)?,如每?jí)多層拓?fù)?、多?多出及全卷積網(wǎng)絡(luò)。新推出的重要網(wǎng)絡(luò)類型不僅可用來(lái)識(shí)別物體,也可用來(lái)識(shí)別場(chǎng)景,從而提供用以解決汽車領(lǐng)域應(yīng)用程序(如自動(dòng)駕駛功能)所需的圖像分割。
當(dāng)然,中國(guó)40家左右的汽車制造商并不會(huì)在此道路上踽踽獨(dú)行。他們會(huì)與百度等技術(shù)公司進(jìn)行密切合作。技術(shù)公司是這些網(wǎng)絡(luò)和架構(gòu)發(fā)展的。CNN網(wǎng)絡(luò)生成器功能的完善也為新的網(wǎng)絡(luò)架構(gòu)和拓?fù)涮峁┝酥С?,如SegNet及GoogLeNet與ResNet等其它網(wǎng)絡(luò)結(jié)構(gòu)以及網(wǎng)絡(luò)層(圖2)。此外,一鍵啟用也讓預(yù)訓(xùn)網(wǎng)絡(luò)轉(zhuǎn)換成優(yōu)化的實(shí)時(shí)網(wǎng)絡(luò)執(zhí)行更為便捷。為確保給常用的網(wǎng)絡(luò)生成器提供支持,CDNN框架與Caffe和TensorFlow(谷歌的機(jī)器學(xué)習(xí)軟件庫(kù))都有合作。
620)this.width=620;"data-ke-src="134533652.jpg"data-ke-onclick="window.open(this.src)"/>圖2網(wǎng)絡(luò)生成器的發(fā)展為新網(wǎng)絡(luò)層及更深的架構(gòu)提供了支持
由于推出的嵌入式處理平臺(tái)在可擴(kuò)展性及靈活性上都有了很大改進(jìn),因此嵌入式部署也可以利用這些改進(jìn)來(lái)完善自身。由于深度學(xué)習(xí)領(lǐng)域的發(fā)展越來(lái)越多樣化,因此擁有一個(gè)不僅能滿足當(dāng)今處理需求,也具有適應(yīng)未來(lái)的技術(shù)創(chuàng)新的靈活架構(gòu)非常重要。
鋪好路
批神經(jīng)網(wǎng)絡(luò)應(yīng)用程序?qū)W⒂谝曈X(jué)處理,以支持諸如自動(dòng)行人、交通信號(hào)或道路特征識(shí)別等功能。由于這些系統(tǒng)的性能不斷改進(jìn),例如處理越來(lái)越大的來(lái)自高分辨率相機(jī)的數(shù)據(jù)集,因此神經(jīng)網(wǎng)絡(luò)也有望在未來(lái)的汽車中發(fā)揮更大的作用。這些作用將包括承擔(dān)系統(tǒng)中其它復(fù)雜的信號(hào)處理任務(wù),例如雷達(dá)模塊及語(yǔ)音識(shí)別系統(tǒng)。
隨著神經(jīng)網(wǎng)絡(luò)首次應(yīng)用于車載自動(dòng)駕駛系統(tǒng),(據(jù)報(bào)道,某些國(guó)家將在2022-2022年型的新車輛中使用神經(jīng)網(wǎng)絡(luò),)對(duì)同時(shí)兼具安全性及可靠性的系統(tǒng)的需求會(huì)越來(lái)越大。中國(guó)政府計(jì)劃在2022至2025年推出自動(dòng)駕駛車輛。要讓此類系統(tǒng)具備可讓客戶使用的條件,汽車制造商必須同時(shí)確保其符合相關(guān)的安全標(biāo)準(zhǔn),如ISO26262功能安全性。這需要硬件、軟件及系統(tǒng)的綜合發(fā)展。
由于這些系統(tǒng)變得越來(lái)越復(fù)雜,因此確保系統(tǒng)可靠安全且能滿足處理需求也成為汽車制造商所面臨的越來(lái)越大的挑戰(zhàn)。
結(jié)論
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 標(biāo)準(zhǔn)活動(dòng)板房工程施工組織設(shè)計(jì)方案
- 綜合實(shí)踐活動(dòng)《尋找名人的足跡》活動(dòng)方案
- 勞動(dòng)力配置與保證措施方案
- 項(xiàng)目部日常管理制度
- 臺(tái)前扶貧工作方案匯報(bào)
- 制度落實(shí)檢查工作方案
- 安全住房實(shí)施方案
- 雙語(yǔ)培訓(xùn)工作實(shí)施方案
- 登封校園網(wǎng)站建設(shè)方案
- GB/T 22144-2025天然礦物質(zhì)飼料通則
- 2026年安徽皖信人力資源管理有限公司公開(kāi)招聘宣城市涇縣某電力外委工作人員筆試備考試題及答案解析
- 2026中國(guó)煙草總公司鄭州煙草研究院高校畢業(yè)生招聘19人備考題庫(kù)(河南)及1套完整答案詳解
- 骨科患者石膏固定護(hù)理
- 陶瓷工藝品彩繪師崗前工作標(biāo)準(zhǔn)化考核試卷含答案
- 居間合同2026年工作協(xié)議
- 醫(yī)療機(jī)構(gòu)信息安全建設(shè)與風(fēng)險(xiǎn)評(píng)估方案
- 化工設(shè)備培訓(xùn)課件教學(xué)
- 供熱運(yùn)行與安全知識(shí)課件
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)3D打印材料行業(yè)發(fā)展前景預(yù)測(cè)及投資戰(zhàn)略數(shù)據(jù)分析研究報(bào)告
- 2026年長(zhǎng)沙衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)及答案詳解1套
- 煤礦三違行為界定標(biāo)準(zhǔn)及處罰細(xì)則
評(píng)論
0/150
提交評(píng)論