2023年廣東省省際名校數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2023年廣東省省際名校數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2023年廣東省省際名校數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2023年廣東省省際名校數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2023年廣東省省際名校數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023高二下數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.x+1A.第5項 B.第5項或第6項 C.第6項 D.不存在2.函數(shù)的導(dǎo)函數(shù)是()A. B.C. D.3.若是兩個非零向量,且,則與的夾角為()A.30° B.45° C.60° D.90°4.命題“?n∈N*,f(n)∈NA.?n∈N*B.?n∈N*C.?n0D.?n05.奇函數(shù)在區(qū)間上單調(diào)遞減,且,則不等式的解集是()A. B.C. D.6.已知隨機(jī)變量,則參考數(shù)據(jù):若,A.0.0148 B.0.1359 C.0.1574 D.0.3148.7.下列命題中正確的是()A.的最小值是2B.的最小值是2C.的最大值是D.的最小值是8.定義在上的函數(shù)若滿足:①對任意、,都有;②對任意,都有,則稱函數(shù)為“中心捺函數(shù)”,其中點(diǎn)稱為函數(shù)的中心.已知函數(shù)是以為中心的“中心捺函數(shù)”,若滿足不等式,當(dāng)時,的取值范圍為()A. B. C. D.9.在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)為,過點(diǎn)的直線與拋物線交于,兩點(diǎn),若,則的面積為()A. B. C. D.10.設(shè)是等差數(shù)列.下列結(jié)論中正確的是()A.若,則 B.若,則C.若,則 D.若,則11.已知曲線在點(diǎn)處的切線平行于直線,那么點(diǎn)的坐標(biāo)為()A.或 B.或C. D.12.在射擊訓(xùn)練中,某戰(zhàn)士射擊了兩次,設(shè)命題p是“第一次射擊擊中目標(biāo)”,命題q是“第二次射擊擊中目標(biāo)”,則命題“兩次射擊中至少有一次沒有擊中目標(biāo)”為真命題的充要條件是().A.為真命題 B.為真命題C.為真命題 D.為真命題二、填空題:本題共4小題,每小題5分,共20分。13.對于定義域為的函數(shù),若滿足①;②當(dāng),且時,都有;③當(dāng),且時,都有,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個函數(shù):①;②;③;④.則其中是“偏對稱函數(shù)”的函數(shù)序號為_______.14.已知向量與的夾角為120°,且,,則__________.15.展開式中,項的系數(shù)為______________16.已知直線的一個法向量,則直線的傾斜角是_________(結(jié)果用反三角函數(shù)表示);三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知復(fù)數(shù),且為純虛數(shù).(1)求復(fù)數(shù);(2)若,求復(fù)數(shù)的模.18.(12分)已知復(fù)數(shù).(1)化簡:;(2)如果,求實數(shù)的值.19.(12分)已知.(Ⅰ)討論的單調(diào)性;(Ⅱ)當(dāng)時,證明對于任意的成立.20.(12分)已知直線(為參數(shù)),曲線(為參數(shù)).(1線與曲線的普通方程;(2),若直線與曲線相交于兩點(diǎn)(點(diǎn)在點(diǎn)的上方),求的值.21.(12分)某區(qū)組織部為了了解全區(qū)科級干部“黨風(fēng)廉政知識”的學(xué)習(xí)情況,按照分層抽樣的方法,從全區(qū)320名正科級干部和1280名副科級干部中抽取40名科級干部預(yù)測全區(qū)科級干部“黨風(fēng)廉政知識”的學(xué)習(xí)情況.現(xiàn)將這40名科級干部分為正科級干部組和副科級干部組,利用同一份試卷分別進(jìn)行預(yù)測.經(jīng)過預(yù)測后,兩組各自將預(yù)測成績統(tǒng)計分析如下表:分組人數(shù)平均成績標(biāo)準(zhǔn)差正科級干部組806副科級干部組704(1)求;(2)求這40名科級干部預(yù)測成績的平均分和標(biāo)準(zhǔn)差;(3)假設(shè)該區(qū)科級干部的“黨風(fēng)廉政知識”預(yù)測成績服從正態(tài)分布,用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值.利用估計值估計:該區(qū)科級干部“黨風(fēng)廉政知識”預(yù)測成績小于60分的約為多少人?附:若隨機(jī)變量服從正態(tài)分布,則;;.22.(10分)在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為(1)設(shè)是參數(shù),若,求直線的參數(shù)方程;(2)已知直線與曲線交于兩點(diǎn),設(shè)且,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)題意,寫出(x+1x)10展開式中的通項為Tr+1,令x【詳解】解:根據(jù)題意,(x+1x)令10-2r=0,可得r=5;則其常數(shù)項為第5+1=6項;故選:C.【點(diǎn)睛】本題考查二項式系數(shù)的性質(zhì),解題的關(guān)鍵是正確應(yīng)用二項式定理,寫出二項式展開式,其次注意項數(shù)值與r的關(guān)系,屬于基礎(chǔ)題.2、D【解析】

根據(jù)導(dǎo)數(shù)的公式即可得到結(jié)論.【詳解】解:由,得故選:D.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的基本運(yùn)算,屬基礎(chǔ)題.3、A【解析】

畫出圖像:根據(jù)計算夾角為,再通過夾角公式計算與的夾角.【詳解】形成一個等邊三角形,如圖形成一個菱形.與的夾角為故答案選A【點(diǎn)睛】本題考查了向量的加減和夾角,通過圖形可以簡化運(yùn)算.4、D【解析】

根據(jù)全稱命題的否定是特稱命題,可知命題“?n∈N*,fn∈N故選D.考點(diǎn):命題的否定5、A【解析】

根據(jù)函數(shù)為奇函數(shù),以及上的單調(diào)性,判斷出上的單調(diào)性,求得的值,對分為四種情況討論,由此求得不等式的解集,進(jìn)而求得的解集.【詳解】由于函數(shù)為奇函數(shù),且在上遞減,故在上遞減,由于,所以當(dāng)或時,;當(dāng)或時,.所以當(dāng)或時.故當(dāng)或即或時,.所以不等式的解集為.故本小題選A.【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性、單調(diào)性,考查函數(shù)變換,考查含有函數(shù)符號的不等式的解法,屬于中檔題.6、B【解析】

根據(jù)正態(tài)分布函數(shù)的對稱性去分析計算相應(yīng)概率.【詳解】因為即,所以,,又,,且,故選:B.【點(diǎn)睛】本題考查正態(tài)分布的概率計算,難度較易.正態(tài)分布的概率計算一般都要用到正態(tài)分布函數(shù)的對稱性,根據(jù)對稱性,可將不易求解的概率轉(zhuǎn)化為易求解的概率.7、C【解析】因為A.的最小值是2,只有x>0成立。B.的最小值是2,取不到最小值。C.的最大值是,成立D.的最小值是,不成立。故選C8、C【解析】

先結(jié)合題中條件得出函數(shù)為減函數(shù)且為奇函數(shù),由,可得出,化簡后得出,結(jié)合可求出,再由結(jié)合不等式的性質(zhì)得出的取值范圍.【詳解】由知此函數(shù)為減函數(shù).由函數(shù)是關(guān)于的“中心捺函數(shù)”,知曲線關(guān)于點(diǎn)對稱,故曲線關(guān)于原點(diǎn)對稱,故函數(shù)為奇函數(shù),且函數(shù)在上遞減,于是得,.,.則當(dāng)時,令m=x,y=n則:問題等價于點(diǎn)(x,y)滿足區(qū)域,如圖陰影部分,由線性規(guī)劃知識可知為(x,y)與(0,0)連線的斜率,由圖可得,,故選:C.【點(diǎn)睛】本題考查代數(shù)式的取值范圍的求解,解題的關(guān)鍵就是分析出函數(shù)的單調(diào)性與奇偶性,利用函數(shù)的奇偶性與單調(diào)性將題中的不等關(guān)系進(jìn)行轉(zhuǎn)化,應(yīng)用到線性規(guī)劃的知識,考查分析問題和解決問題的能力,屬于難題.9、C【解析】

設(shè)直線的方程為,與拋物線聯(lián)立,設(shè),由,所以,結(jié)合韋達(dá)定理可得,,由可得解.【詳解】因為拋物線的焦點(diǎn)為所以,設(shè)直線的方程為,將代入,可得,設(shè),則,,因為,所以,所以,,所以,即,所以,所以的面積,故選C.【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了設(shè)而不求的思想,由轉(zhuǎn)化為是解題的關(guān)鍵,屬于基礎(chǔ)題.10、C【解析】

先分析四個答案,A舉一反例,而,A錯誤,B舉同樣反例,,而,B錯誤,D選項,故D錯,下面針對C進(jìn)行研究,是等差數(shù)列,若,則設(shè)公差為,則,數(shù)列各項均為正,由于,則,故選C.考點(diǎn):本題考點(diǎn)為等差數(shù)列及作差比較法,以等差數(shù)列為載體,考查不等關(guān)系問題,重點(diǎn)是對知識本質(zhì)的考查.11、B【解析】分析:設(shè)的坐標(biāo)為,則,求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線平行的條件可得的方程,求得的值從而可得結(jié)果.詳解:設(shè)的坐標(biāo)為,則,的導(dǎo)數(shù)為,在點(diǎn)處的切線斜率為,由切線平行于直線,可得,解得,即有或,故選B.點(diǎn)睛:本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處的切線斜率,考查兩直線平行的條件:斜率相等,屬于基礎(chǔ)題.12、A【解析】

由已知,先表示出命題“兩次射擊至少有一次沒有擊中目標(biāo)”,在選擇使該命題成立的一個充分條件.【詳解】命題是“第一次射擊擊中目標(biāo)”,

命題是“第二次射擊擊中目標(biāo)”,

∴命題“兩次射擊至少有一次沒有擊中目標(biāo)”,“兩次射擊中至少有一次沒有擊中目標(biāo)”為真命題的充要條件:為真.故選:A.【點(diǎn)睛】本題考查的知識點(diǎn)是事件的表示,本題考查復(fù)合命題的真假的判斷,考查充分條件的選擇,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①④.【解析】分析:條件②等價于f(x)在(﹣∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,條件③等價于f(x)﹣f(﹣x)<0在(﹣∞,0)上恒成立,依次判斷各函數(shù)是否滿足條件即可得出結(jié)論.詳解:由②可知當(dāng)x>0時,f′(x)>0,當(dāng)x<0時,f′(x)<0,∴f(x)在(﹣∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,f2(x)=ln(﹣x)=ln,∴f2(x)在R上單調(diào)遞減,不滿足條件②,∴f2(x)不是“偏對稱函數(shù)”;又()=()=0,∴(x)在(0,+∞)上不單調(diào),故(x)不滿足條件②,∴(x)不是“偏對稱函數(shù)”;又f2(x)=ln(﹣x)=ln,∴f2(x)在R上單調(diào)遞減,不滿足條件②,∴f2(x)不是“偏對稱函數(shù)”;由③可知當(dāng)x1<0時,f(x1)<f(﹣x2),即f(x)﹣f(﹣x)<0在(﹣∞,0)上恒成立,對于(x),當(dāng)x<0時,(x)﹣(﹣x)=﹣x﹣e﹣x+1,令h(x)=﹣x﹣e﹣x+1,則h′(x)=﹣1+e﹣x>0,∴h(x)在(﹣∞,0)上單調(diào)遞增,故h(x)<h(0)=0,滿足條件③,由基本初等函數(shù)的性質(zhì)可知(x)滿足條件①,②,∴(x)為“偏對稱函數(shù)”;對于f4(x),f4′(x)=2e2x﹣ex﹣1=2(ex﹣)2﹣,∴當(dāng)x<0時,0<ex<1,∴f4′(x)<2(1﹣)2﹣=0,當(dāng)x>0時,ex>1,∴f4′(x)>2(1﹣)2﹣=0,∴f4(x)在(﹣∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,滿足條件②,當(dāng)x<0,令m(x)=f4(x)﹣f4(﹣x)=e2x﹣e﹣2x+e﹣x﹣ex﹣2x,則m′(x)=2e2x+2e﹣2x﹣e﹣x﹣ex﹣2=2(e2x+e﹣2x)﹣(e﹣x+ex)﹣2,令e﹣x+ex=t,則t≥2,于是m′(x)=2t2﹣t﹣6=2(t﹣)2﹣≥2(2﹣)2﹣=0,∴m(x)在(﹣∞,0)上單調(diào)遞增,∴m(x)<m(0)=0,故f4(x)滿足條件③,又f4(0)=0,即f4(x)滿足條件①,∴f4(x)為“偏對稱函數(shù)”.故答案為:①④.點(diǎn)睛:本題以新定義“偏對稱函數(shù)”為背景,考查了函數(shù)的單調(diào)性及恒成立問題的處理方法,屬于中檔題.14、7【解析】由題意得,則715、【解析】∴二項式展開式中,含項為∴它的系數(shù)為1.故答案為1.16、【解析】

由法向量與方向向量垂直,求出方向向量,得直線的斜率,從而得傾斜角?!驹斀狻恐本€的一個法向量,則直線的一個方向向量為,其斜率為,∴傾斜角為。故答案為:。【點(diǎn)睛】本題考查求直線的傾斜角,由方向向量與法向量的垂直關(guān)系可求得直線斜率,從而求得傾斜角,注意傾斜角范圍是,而反正切函數(shù)值域是。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)將復(fù)數(shù)代入,令其實部為0,虛部不為0,可解得m,進(jìn)而求出復(fù)數(shù)z;(2)先根據(jù)復(fù)數(shù)的除法法則計算w,再由公式計算w的模.【詳解】解:(1)是純虛數(shù),且(2)..【點(diǎn)睛】本題考查復(fù)數(shù)的概念和模以及復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題.18、(1);(2).【解析】

(1)由復(fù)數(shù)z求出,然后代入復(fù)數(shù)ω=z2+34化簡求值即可;(2)把復(fù)數(shù)z代入,然后由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡求值,再根據(jù)復(fù)數(shù)相等的定義列出方程組,從而解方程組可求得答案.【詳解】(1)∵,∴,∴.(2)∵,∴解得:【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,考查了復(fù)數(shù)相等的定義,是基礎(chǔ)題.19、(Ⅰ)見解析;(Ⅱ)見解析【解析】試題分析:(Ⅰ)求的導(dǎo)函數(shù),對a進(jìn)行分類討論,求的單調(diào)性;(Ⅱ)要證對于任意的成立,即證,根據(jù)單調(diào)性求解.試題解析:(Ⅰ)的定義域為;.當(dāng),時,,單調(diào)遞增;,單調(diào)遞減.當(dāng)時,.(1),,當(dāng)或時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;(2)時,,在內(nèi),,單調(diào)遞增;(3)時,,當(dāng)或時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減.綜上所述,當(dāng)時,函數(shù)在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;當(dāng)時,在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;當(dāng)時,在內(nèi)單調(diào)遞增;當(dāng),在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.(Ⅱ)由(Ⅰ)知,時,,,令,.則,由可得,當(dāng)且僅當(dāng)時取得等號.又,設(shè),則在單調(diào)遞減,因為,所以在上存在使得時,時,,所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞減,由于,因此,當(dāng)且僅當(dāng)取得等號,所以,即對于任意的恒成立?!究键c(diǎn)】利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,分類討論思想.【名師點(diǎn)睛】本題主要考查導(dǎo)數(shù)的計算、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、分類討論思想.本題覆蓋面廣,對考生計算能力要求較高,是一道難題.解答本題,準(zhǔn)確求導(dǎo)數(shù)是基礎(chǔ),恰當(dāng)分類討論是關(guān)鍵,易錯點(diǎn)是分類討論不全面、不徹底、不恰當(dāng),或因復(fù)雜式子變形能力差,而錯誤百出.本題能較好地考查考生的邏輯思維能力、基本計算能力、分類討論思想等.20、(1),;(2).【解析】試題分析:(1)根據(jù)加減消元法得直線的普通方程;根據(jù)三角函數(shù)平方關(guān)系得曲線的普通方程(2)由橢圓的定義知:,根據(jù)直線參數(shù)方程幾何意義得,將直線參數(shù)方程代入曲線的普通方程,根據(jù)韋達(dá)定理可得結(jié)果試題解析:解:(1)由直線已知直線(為參數(shù)),消去參數(shù)得:曲線(為參數(shù))消去參數(shù)得:.(2)設(shè)將直線的參數(shù)方程代入得:由韋達(dá)定理可得:結(jié)合圖像可知,由橢圓的定義知:.21、(1)8,32;(2)72,6;(3)36.【解析】

(1)首先求得樣本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論