版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一次函數(shù)滿足,且隨的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如圖所示,在方格紙上建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°,得到△A′B′O,則點(diǎn)A′的坐標(biāo)為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)3.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±204.的算術(shù)平方根是()A.4 B.±4 C.2 D.±25.規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根是另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論:①方程x2+2x﹣8=0是倍根方程;②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);④若點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.上述結(jié)論中正確的有(
)A.①② B.③④ C.②③ D.②④6.如表記錄了甲、乙、丙、丁四名跳高運(yùn)動(dòng)員最近幾次選拔賽成績(jī)的平均數(shù)與方差:甲乙丙丁平均數(shù)(cm)185180185180方差3.63.67.48.1根據(jù)表數(shù)據(jù),從中選擇一名成績(jī)好且發(fā)揮穩(wěn)定的參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁7.將一副三角板按如圖方式擺放,∠1與∠2不一定互補(bǔ)的是()A. B. C. D.8.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是()A.1 B.2 C.3 D.49.如圖,在⊙O中,點(diǎn)P是弦AB的中點(diǎn),CD是過點(diǎn)P的直徑,則下列結(jié)論:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正確的個(gè)數(shù)是()A.4 B.1 C.2 D.310.矩形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,4)、B(1,1)、C(5,1),則點(diǎn)D的坐標(biāo)為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)11.世界上最小的開花結(jié)果植物是澳大利亞的出水浮萍,這種植物的果實(shí)像一個(gè)微小的無花果,質(zhì)量只有0.0000000076克,將數(shù)0.0000000076用科學(xué)記數(shù)法表示為()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×10812.一個(gè)半徑為24的扇形的弧長(zhǎng)等于20π,則這個(gè)扇形的圓心角是()A.120° B.135° C.150° D.165°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.分解因式:x2-9=_▲.14.如圖,的頂點(diǎn)落在兩條平行線上,點(diǎn)D、E、F分別是三邊中點(diǎn),平行線間的距離是8,,移動(dòng)點(diǎn)A,當(dāng)時(shí),EF的長(zhǎng)度是______.15.如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1),B(1,0),將線段AB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標(biāo)為_____.16.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.則當(dāng)乙車到達(dá)A地時(shí),甲車已在C地休息了_____小時(shí).17.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對(duì)應(yīng)中線的比為_____.18.如圖,邊長(zhǎng)為6的菱形ABCD中,AC是其對(duì)角線,∠B=60°,點(diǎn)P在CD上,CP=2,點(diǎn)M在AD上,點(diǎn)N在AC上,則△PMN的周長(zhǎng)的最小值為_____________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知AC=DC,AC⊥DC,直線MN經(jīng)過點(diǎn)A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說明理由;②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;(3)在MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時(shí),直接寫出BC的值.20.(6分)如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(4,0),與y軸交于點(diǎn)C(0,2)(1)求拋物線的表達(dá)式;(2)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,點(diǎn)D與點(diǎn)C關(guān)于點(diǎn)M對(duì)稱,試問在該拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△BMP與△ABD相似?若存在,請(qǐng)求出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.21.(6分)先化簡(jiǎn),再求值:,其中x=-522.(8分)已知:如圖,,,.求證:.23.(8分)為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表.調(diào)查結(jié)果統(tǒng)計(jì)表組別分組(單位:元)人數(shù)A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bEx≥1202請(qǐng)根據(jù)以上圖表,解答下列問題:填空:這次被調(diào)查的同學(xué)共有人,a+b=,m=;求扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù);該校共有學(xué)生1000人,請(qǐng)估計(jì)每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).24.(10分)隨著交通道路的不斷完善,帶動(dòng)了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2017年“五?一”長(zhǎng)假期間旅游情況統(tǒng)計(jì)圖,根據(jù)以下信息解答下列問題:(1)2017年“五?一”期間,該市周邊景點(diǎn)共接待游客萬人,扇形統(tǒng)計(jì)圖中A景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是,并補(bǔ)全條形統(tǒng)計(jì)圖.(2)根據(jù)近幾年到該市旅游人數(shù)增長(zhǎng)趨勢(shì),預(yù)計(jì)2018年“五?一”節(jié)將有80萬游客選擇該市旅游,請(qǐng)估計(jì)有多少萬人會(huì)選擇去E景點(diǎn)旅游?(3)甲、乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中,同時(shí)選擇去同一景點(diǎn)的概率是多少?請(qǐng)用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.25.(10分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長(zhǎng).26.(12分)已知,四邊形ABCD中,E是對(duì)角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙O與邊CD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.27.(12分)填空并解答:某單位開設(shè)了一個(gè)窗口辦理業(yè)務(wù),并按顧客“先到達(dá),先辦理”的方式服務(wù),該窗口每2分鐘服務(wù)一位顧客.已知早上8:00上班窗口開始工作時(shí),已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達(dá),且以后每5分鐘就有一位“新顧客”到達(dá).該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個(gè)不需要排隊(duì)的?分析:可設(shè)原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時(shí)刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達(dá)窗口時(shí)刻000000161116…服務(wù)開始時(shí)刻024681012141618…每人服務(wù)時(shí)長(zhǎng)2222222222…服務(wù)結(jié)束時(shí)刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個(gè)不需要排隊(duì)的.(2)若其他條件不變,若窗口每a分鐘辦理一個(gè)客戶(a為正整數(shù)),則當(dāng)a最小取什么值時(shí),窗口排隊(duì)現(xiàn)象不可能消失.分析:第n個(gè)“新顧客”到達(dá)窗口時(shí)刻為,第(n﹣1)個(gè)“新顧客”服務(wù)結(jié)束的時(shí)刻為.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】試題分析:根據(jù)y隨x的增大而減小得:k<0,又kb>0,則b<0,故此函數(shù)的圖象經(jīng)過第二、三、四象限,即不經(jīng)過第一象限.故選A.考點(diǎn):一次函數(shù)圖象與系數(shù)的關(guān)系.2、D【解析】
解決本題抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時(shí)針,旋轉(zhuǎn)角度90°,通過畫圖得A′.【詳解】由圖知A點(diǎn)的坐標(biāo)為(-3,1),根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時(shí)針,旋轉(zhuǎn)角度90°,畫圖,從而得A′點(diǎn)坐標(biāo)為(1,3).故選D.3、B【解析】
根據(jù)完全平方式的特點(diǎn)求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點(diǎn)睛】本題考查了完全平方公式:a2±2ab+b2,其特點(diǎn)是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項(xiàng)是x和1的平方,那么中間項(xiàng)為加上或減去x和1的乘積的2倍.4、C【解析】
先求出的值,然后再利用算術(shù)平方根定義計(jì)算即可得到結(jié)果.【詳解】=4,4的算術(shù)平方根是2,所以的算術(shù)平方根是2,故選C.【點(diǎn)睛】本題考查了算術(shù)平方根,熟練掌握算術(shù)平方根的定義是解本題的關(guān)鍵.5、C【解析】分析:①通過解方程得到該方程的根,結(jié)合“倍根方程”的定義進(jìn)行判斷;②設(shè)=2,得到?=2=2,得到當(dāng)=1時(shí),=2,當(dāng)=-1時(shí),=-2,于是得到結(jié)論;③根據(jù)“倍根方程”的定義即可得到結(jié)論;④若點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結(jié)論;詳解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①錯(cuò)誤;②關(guān)于x的方程+ax+2=0是倍根方程,∴設(shè)=2,∴?=2=2,∴=±1,當(dāng)=1時(shí),=2,當(dāng)=-1時(shí),=-2,∴+=-a=±3,∴a=±3,故②正確;③關(guān)于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵拋物線y=a-6ax+c的對(duì)稱軸是直線x=3,∴拋物線y=a-6ax+c與x軸的交點(diǎn)的坐標(biāo)是(2,0)和(4,0),故③正確;④∵點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴關(guān)于x的方程m+5x+n=0不是倍根方程;故選C.點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根與系數(shù)的關(guān)系,正確的理解倍根方程的定義是解題的關(guān)鍵.6、A【解析】
首先比較平均數(shù),平均數(shù)相同時(shí)選擇方差較小的運(yùn)動(dòng)員參加.【詳解】∵=>=,∴從甲和丙中選擇一人參加比賽,∵=<<,∴選擇甲參賽,故選A.【點(diǎn)睛】此題主要考查了平均數(shù)和方差的應(yīng)用,解題關(guān)鍵是明確平均數(shù)越高,成績(jī)?cè)礁?,方差越小,成?jī)?cè)椒€(wěn)定.7、D【解析】A選項(xiàng):∠1+∠2=360°-90°×2=180°;B選項(xiàng):∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項(xiàng):∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項(xiàng):∠1和∠2不一定互補(bǔ).故選D.點(diǎn)睛:本題主要掌握平行線的性質(zhì)與判定定理,關(guān)鍵在于通過角度之間的轉(zhuǎn)化得出∠1和∠2的互補(bǔ)關(guān)系.8、B【解析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點(diǎn),進(jìn)而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,且開口向下,∴x=1時(shí),y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當(dāng)x=﹣1時(shí),a﹣b+c=0,故②錯(cuò)誤;③圖象與x軸有2個(gè)交點(diǎn),故b2﹣4ac>0,故③錯(cuò)誤;④∵圖象的對(duì)稱軸為x=1,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),∴A(3,0),故當(dāng)y>0時(shí),﹣1<x<3,故④正確.故選B.點(diǎn)睛:此題主要考查了二次函數(shù)的性質(zhì)以及二次函數(shù)最值等知識(shí),正確得出A點(diǎn)坐標(biāo)是解題關(guān)鍵.9、D【解析】
根據(jù)垂徑定理,圓周角的性質(zhì)定理即可作出判斷.【詳解】∵P是弦AB的中點(diǎn),CD是過點(diǎn)P的直徑.∴AB⊥CD,弧AD=弧BD,故①正確,③正確;∠AOB=2∠AOD=4∠ACD,故②正確.P是OD上的任意一點(diǎn),因而④不一定正確.故正確的是:①②③.故選:D.【點(diǎn)睛】本題主要考查了垂徑定理,圓周角定理,正確理解定理是關(guān)鍵.平分弦(不是直徑)的直徑垂直與這條弦,并且平分這條弦所對(duì)的兩段??;同圓或等圓中,圓周角等于它所對(duì)的弧上的圓心角的一半.10、B【解析】
由矩形的性質(zhì)可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點(diǎn)D坐標(biāo).【詳解】解:∵四邊形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y軸,AD∥BC∥x軸
∴點(diǎn)D坐標(biāo)為(5,4)
故選B.【點(diǎn)睛】本題考查了矩形的性質(zhì),坐標(biāo)與圖形性質(zhì),關(guān)鍵是熟練掌握這些性質(zhì).11、A【解析】
絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】解:將0.0000000076用科學(xué)計(jì)數(shù)法表示為.故選A.【點(diǎn)睛】本題考查了用科學(xué)計(jì)數(shù)法表示較小的數(shù),一般形式為a×,其中,n為由原數(shù)左邊起第一個(gè)不為0的數(shù)字前面的0的個(gè)數(shù)所決定.12、C【解析】
這個(gè)扇形的圓心角的度數(shù)為n°,根據(jù)弧長(zhǎng)公式得到20π=,然后解方程即可.【詳解】解:設(shè)這個(gè)扇形的圓心角的度數(shù)為n°,根據(jù)題意得20π=,解得n=150,即這個(gè)扇形的圓心角為150°.故選C.【點(diǎn)睛】本題考查了弧長(zhǎng)公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(x+3)(x-3)【解析】
x2-9=(x+3)(x-3),故答案為(x+3)(x-3).14、1【解析】
過點(diǎn)D作于點(diǎn)H,根等腰三角形的性質(zhì)求得BD的長(zhǎng)度,繼而得到,結(jié)合三角形中位線定理求得EF的長(zhǎng)度即可.【詳解】解:如圖,過點(diǎn)D作于點(diǎn)H,
過點(diǎn)D作于點(diǎn)H,,
.
又平行線間的距離是8,點(diǎn)D是AB的中點(diǎn),
,
在直角中,由勾股定理知,.
點(diǎn)D是AB的中點(diǎn),
.
又點(diǎn)E、F分別是AC、BC的中點(diǎn),
是的中位線,
.
故答案是:1.【點(diǎn)睛】考查了三角形中位線定理和平行線的性質(zhì),解題的關(guān)鍵是根據(jù)平行線的性質(zhì)求得DH的長(zhǎng)度.15、(2,3)【解析】
作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,證明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得結(jié)果.【詳解】如圖,作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,∵點(diǎn)A、B的坐標(biāo)分別為(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴點(diǎn)A′的坐標(biāo)為(2,3).故答案為(2,3).【點(diǎn)睛】此題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),點(diǎn)的坐標(biāo)的確定.解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形.16、2.1.【解析】
根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得乙車的速度和到達(dá)A地時(shí)所用的時(shí)間,從而可以解答本題.【詳解】由題意可得,甲車到達(dá)C地用時(shí)4個(gè)小時(shí),乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達(dá)A地用時(shí)為:(200+240)÷80+1=6.1(小時(shí)),當(dāng)乙車到達(dá)A地時(shí),甲車已在C地休息了:6.1﹣4=2.1(小時(shí)),故答案為:2.1.【點(diǎn)睛】本題考查了一次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.17、3:4【解析】由于相似三角形的相似比等于對(duì)應(yīng)中線的比,∴△ABC與△DEF對(duì)應(yīng)中線的比為3:4故答案為3:4.18、2【解析】
過P作關(guān)于AC和AD的對(duì)稱點(diǎn),連接和,過P作,和,M,N共線時(shí)最短,根據(jù)對(duì)稱性得知△PMN的周長(zhǎng)的最小值為.因?yàn)樗倪呅蜛BCD是菱形,AD是對(duì)角線,可以求得,根據(jù)特殊三角形函數(shù)值求得,,再根據(jù)線段相加勾股定理即可求解.【詳解】過P作關(guān)于AC和AD的對(duì)稱點(diǎn),連接和,過P作,四邊形ABCD是菱形,AD是對(duì)角線,,,,,又由題意得【點(diǎn)睛】本題主要考查對(duì)稱性質(zhì),菱形性質(zhì),內(nèi)角和定理和勾股定理,熟悉掌握定理是關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)相等或互補(bǔ);(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】
(1)分為點(diǎn)C,D在直線MN同側(cè)和點(diǎn)C,D在直線MN兩側(cè),兩種情況討論即可解題,(2)①作輔助線,證明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解題,②在射線AM上截取AF=BD,連接CF,證明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解題,(3)分為當(dāng)點(diǎn)C,D在直線MN同側(cè),當(dāng)點(diǎn)C,D在直線MN兩側(cè),兩種情況解題即可,見詳解.【詳解】解:(1)相等或互補(bǔ);理由:當(dāng)點(diǎn)C,D在直線MN同側(cè)時(shí),如圖1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四邊形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;當(dāng)點(diǎn)C,D在直線MN兩側(cè)時(shí),如圖2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D與∠MAC之間的數(shù)量是相等或互補(bǔ);(2)①猜想:BD+AB=BC如圖3,在射線AM上截取AF=BD,連接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如圖2,在射線AM上截取AF=BD,連接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①當(dāng)點(diǎn)C,D在直線MN同側(cè)時(shí),如圖3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,過點(diǎn)D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②當(dāng)點(diǎn)C,D在直線MN兩側(cè)時(shí),如圖2﹣1,過點(diǎn)D作DG⊥CB交CB的延長(zhǎng)線于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,【點(diǎn)睛】本題考查了三角形中的邊長(zhǎng)關(guān)系,等腰直角三角形的性質(zhì),中等難度,分類討論與作輔助線是解題關(guān)鍵.20、(1)y=﹣x2+x+2;(2)滿足條件的點(diǎn)P的坐標(biāo)為(,)或(,﹣)或(,5)或(,﹣5).【解析】
(1)利用待定系數(shù)法求拋物線的表達(dá)式;(2)使△BMP與△ABD相似的有三種情況,分別求出這三個(gè)點(diǎn)的坐標(biāo).【詳解】(1)∵拋物線與x軸交于點(diǎn)A(﹣1,0),B(4,0),∴設(shè)拋物線的解析式為y=a(x+1)(x﹣4),∵拋物線與y軸交于點(diǎn)C(0,2),∴a×1×(﹣4)=2,∴a=﹣,∴拋物線的解析式為y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如圖1,連接CD,∵拋物線的解析式為y=﹣x2+x+2,∴拋物線的對(duì)稱軸為直線x=,∴M(,0),∵點(diǎn)D與點(diǎn)C關(guān)于點(diǎn)M對(duì)稱,且C(0,2),∴D(3,﹣2),∵M(jìn)A=MB,MC=MD,∴四邊形ACBD是平行四邊形,∵A(﹣1,0),B(4,0),C(3,﹣22),∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,設(shè)點(diǎn)P(,m),∴MP=|m|,∵M(jìn)(,0),B(4,0),∴BM=,∵△BMP與△ABD相似,∴①當(dāng)△BMP∽ADB時(shí),∴,∴,∴m=±,∴P(,)或(,﹣),②當(dāng)△BMP∽△BDA時(shí),,∴,∴m=±5,∴P(,5)或(,﹣5),即:滿足條件的點(diǎn)P的坐標(biāo)為P(,)或(,﹣)或(,5)或(,﹣5).【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.21、,-【解析】分析:首先把括號(hào)里的式子進(jìn)行通分,然后把除法運(yùn)算轉(zhuǎn)化成乘法運(yùn)算,進(jìn)行約分化簡(jiǎn),最后代值計(jì)算.詳解:.當(dāng)時(shí),原式.點(diǎn)睛:本題主要考查分式的混合運(yùn)算,注意運(yùn)算順序,并熟練掌握同分、因式分解、約分等知識(shí)點(diǎn).22、見解析【解析】
先通過∠BAD=∠CAE得出∠BAC=∠DAE,從而證明△ABC≌△ADE,得到BC=DE.【詳解】證明:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC.
即∠BAC=∠DAE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS).
∴BC=DE.【點(diǎn)睛】本題考查三角形全等的判定方法和全等三角形的性質(zhì),判定兩個(gè)三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.23、50;28;8【解析】【分析】1)用B組的人數(shù)除以B組人數(shù)所占的百分比,即可得這次被調(diào)查的同學(xué)的人數(shù),利用A組的人數(shù)除以這次被調(diào)查的同學(xué)的人數(shù)即可求得m的值,用總?cè)藬?shù)減去A、B、E的人數(shù)即可求得a+b的值;(2)先求得C組人數(shù)所占的百分比,乘以360°即可得扇形統(tǒng)計(jì)圖中扇形的圓心角度數(shù);(3)用總?cè)藬?shù)1000乘以每月零花錢的數(shù)額在范圍的人數(shù)的百分比即可求得答案.【詳解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)×360°=40%×360°=144°.即扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù)為144°;(3)1000×=560(人).即每月零花錢的數(shù)額x元在60≤x<120范圍的人數(shù)為560人.【點(diǎn)睛】本題考核知識(shí)點(diǎn):統(tǒng)計(jì)圖表.解題關(guān)鍵點(diǎn):從統(tǒng)計(jì)圖表獲取信息,用樣本估計(jì)總體.24、(1)50,108°,補(bǔ)圖見解析;(2)9.6;(3).【解析】
(1)根據(jù)A景點(diǎn)的人數(shù)以及百分表進(jìn)行計(jì)算即可得到該市周邊景點(diǎn)共接待游客數(shù);先求得A景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù),再根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進(jìn)行計(jì)算即可;根據(jù)B景點(diǎn)接待游客數(shù)補(bǔ)全條形統(tǒng)計(jì)圖;(2)根據(jù)E景點(diǎn)接待游客數(shù)所占的百分比,即可估計(jì)2018年“五?一”節(jié)選擇去E景點(diǎn)旅游的人數(shù);(3)根據(jù)甲、乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中各選擇一個(gè)景點(diǎn),畫出樹狀圖,根據(jù)概率公式進(jìn)行計(jì)算,即可得到同時(shí)選擇去同一景點(diǎn)的概率.【詳解】解:(1)該市周邊景點(diǎn)共接待游客數(shù)為:15÷30%=50(萬人),A景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是:30%×360°=108°,B景點(diǎn)接待游客數(shù)為:50×24%=12(萬人),補(bǔ)全條形統(tǒng)計(jì)圖如下:(2)∵E景點(diǎn)接待游客數(shù)所占的百分比為:×100%=12%,∴2018年“五?一”節(jié)選擇去E景點(diǎn)旅游的人數(shù)約為:80×12%=9.6(萬人);(3)畫樹狀圖可得:∵共有9種可能出現(xiàn)的結(jié)果,這些結(jié)果出現(xiàn)的可能性相等,其中同時(shí)選擇去同一個(gè)景點(diǎn)的結(jié)果有3種,∴同時(shí)選擇去同一個(gè)景點(diǎn)的概率=.【點(diǎn)睛】本題考查列表法與樹狀圖法;用樣本估計(jì)總體;扇形統(tǒng)計(jì)圖;條形統(tǒng)計(jì)圖.25、(1)證明見解析;(2)1.【解析】試題分析:(1)取BD的中點(diǎn)0,連結(jié)OE,如圖,由∠BED=90°,根據(jù)圓周角定理可得BD為△BDE的外接圓的直徑,點(diǎn)O為△BDE的外接圓的圓心,再證明OE∥BC,得到∠AEO=∠C=90°,于是可根據(jù)切線的判定定理判斷AC是△BDE的外接圓的切線;(2)設(shè)⊙O的半徑為r,根據(jù)勾股定理得62+r2=(r+23)2,解得r=23,根據(jù)平行線分線段成比例定理,由OE∥BC得AECE試題解析:(1)證明:取BD的中點(diǎn)0,連結(jié)OE,如圖,∵DE⊥EB,∴∠BED=90°,∴BD為△BDE的外接圓的直徑,點(diǎn)O為△BDE的外接圓的圓心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圓的切線;(2)解:設(shè)⊙O的半徑為r,則OA=OD+DA=r+23,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+23)2,解得r=23,∵OE∥BC,∴AECE=AO∴CE=1.考點(diǎn):1、切線的判定;2、勾股定理26、(1)證明見解析;(2)證明見解析;(3)證明見解析.【解析】
(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結(jié)論;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 嬰兒吸痰護(hù)理的研究進(jìn)展
- 跨境電商倉(cāng)儲(chǔ)協(xié)議(2025年供應(yīng)鏈管理)
- 2025-2026人教版小學(xué)二年級(jí)語(yǔ)文上期末考試卷
- 2025-2026五年級(jí)信息技術(shù)上學(xué)期測(cè)試卷
- 腸道菌群丁酸代謝物與腸癌免疫治療
- 衛(wèi)生監(jiān)督所監(jiān)督管理制度
- 小學(xué)衛(wèi)生保健室教育制度
- 消納場(chǎng)環(huán)境衛(wèi)生管理制度
- 水產(chǎn)加工業(yè)衛(wèi)生制度
- 衛(wèi)生院財(cái)務(wù)結(jié)算管理制度
- 電烘箱設(shè)備安全操作規(guī)程手冊(cè)
- 2026云南昆明市公共交通有限責(zé)任公司總部職能部門員工遴選48人筆試模擬試題及答案解析
- 2025至2030中國(guó)數(shù)字經(jīng)濟(jì)產(chǎn)業(yè)發(fā)展現(xiàn)狀及未來趨勢(shì)分析報(bào)告
- 上海市松江區(qū)2025-2026學(xué)年八年級(jí)(上)期末化學(xué)試卷(含答案)
- 導(dǎo)管室護(hù)理新技術(shù)
- 中國(guó)信通服務(wù):2025算力運(yùn)維體系技術(shù)白皮書
- 2026年焦作大學(xué)單招試題附答案
- 電力行業(yè)五新技術(shù)知識(shí)點(diǎn)梳理
- 《DLT 849.1-2004電力設(shè)備專用測(cè)試儀器通 用技術(shù)條件 第1部分:電纜故障閃測(cè)儀》專題研究報(bào)告 深度
- 餐飲業(yè)店長(zhǎng)運(yùn)營(yíng)效率考核表
- 超市安全生產(chǎn)協(xié)議書
評(píng)論
0/150
提交評(píng)論