廣東省華南師范大附屬中學(xué)2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第1頁
廣東省華南師范大附屬中學(xué)2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第2頁
廣東省華南師范大附屬中學(xué)2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第3頁
廣東省華南師范大附屬中學(xué)2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第4頁
廣東省華南師范大附屬中學(xué)2022-2023學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在函數(shù)y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠12.在平面直角坐標(biāo)系中,二次函數(shù)y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.3.已知直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,那么直線y=bx-a一定不經(jīng)過(

)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限4.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關(guān)于BD對稱5.為了解某校初三學(xué)生的體重情況,從中隨機抽取了80名初三學(xué)生的體重進行統(tǒng)計分析,在此問題中,樣本是指()A.80 B.被抽取的80名初三學(xué)生C.被抽取的80名初三學(xué)生的體重 D.該校初三學(xué)生的體重6.甲、乙兩班舉行電腦漢字輸入比賽,參賽學(xué)生每分鐘輸入漢字個數(shù)的統(tǒng)計結(jié)果如下表:班級參加人數(shù)平均數(shù)中位數(shù)方差甲55135149191乙55135151110某同學(xué)分析上表后得出如下結(jié)論:①甲、乙兩班學(xué)生的平均成績相同;②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字≥150個為優(yōu)秀);③甲班成績的波動比乙班大.上述結(jié)論中,正確的是()A.①② B.②③ C.①③ D.①②③7.如圖,一圓弧過方格的格點A、B、C,在方格中建立平面直角坐標(biāo)系,使點A的坐標(biāo)為(﹣3,2),則該圓弧所在圓心坐標(biāo)是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)8.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.9.汽車剎車后行駛的距離s(單位:m)關(guān)于行駛的時間t(單位:s)的函數(shù)解析式是s=20t﹣5t2,汽車剎車后停下來前進的距離是()A.10mB.20mC.30mD.40m10.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°二、填空題(共7小題,每小題3分,滿分21分)11.若關(guān)于的一元二次方程有實數(shù)根,則的取值范圍是________.12.如圖,Rt△ABC中,若∠C=90°,BC=4,tanA=,則AB=___.13.如圖,在△ABC中,∠C=40°,CA=CB,則△ABC的外角∠ABD=°.14.如圖,?ABCD中,M、N是BD的三等分點,連接CM并延長交AB于點E,連接EN并延長交CD于點F,以下結(jié)論:①E為AB的中點;②FC=4DF;③S△ECF=;④當(dāng)CE⊥BD時,△DFN是等腰三角形.其中一定正確的是_____.15.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____16.分解因式___________17.若向北走5km記作﹣5km,則+10km的含義是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此時小強頭部E點與地面DK相距多少?(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應(yīng)向前或后退多少?19.(5分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.20.(8分)已知BD平分∠ABF,且交AE于點D.(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)設(shè)AP交BD于點O,交BF于點C,連接CD,當(dāng)AC⊥BD時,求證:四邊形ABCD是菱形.21.(10分)已知開口向下的拋物線y=ax2-2ax+2與y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關(guān)于對稱軸對稱,直線BD與x軸交于點M,直線AB與直線OD交于點N.(1)求點D的坐標(biāo).(2)求點M的坐標(biāo)(用含a的代數(shù)式表示).(3)當(dāng)點N在第一象限,且∠OMB=∠ONA時,求a的值.22.(10分)如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結(jié)AE.(1)如圖1,當(dāng)點D與M重合時,求證:四邊形ABDE是平行四邊形;(2)如圖2,當(dāng)點D不與M重合時,(1)中的結(jié)論還成立嗎?請說明理由.(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.①求∠CAM的度數(shù);②當(dāng)FH=,DM=4時,求DH的長.23.(12分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)的圖象交于C、D兩點.已知點C的坐標(biāo)是(6,-1),D(n,3).求m的值和點D的坐標(biāo).求的值.根據(jù)圖象直接寫出:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?24.(14分)為了弘揚我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學(xué)生成績統(tǒng)計表:“祖沖之獎”的學(xué)生成績統(tǒng)計表:分數(shù)/分80859095人數(shù)/人42104根據(jù)圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎”的人數(shù)是_____,并將條形統(tǒng)計圖補充完整;(2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是_____分,眾數(shù)是_____分;(3)在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標(biāo)有數(shù)字“﹣2”,“﹣1”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點(x,y).用列表法或樹狀圖法求這個點在第二象限的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)分式和二次根式有意義的條件進行計算即可.【詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【點睛】本題考查了函數(shù)自變量的取值范圍問題,掌握分式和二次根式有意義的條件是解題的關(guān)鍵.2、B【解析】

根據(jù)題目給出的二次函數(shù)的表達式,可知二次函數(shù)的開口向下,即可得出答案.【詳解】二次函數(shù)y=a(x﹣h)2+k(a<0)二次函數(shù)開口向下.即B成立.故答案選:B.【點睛】本題考查的是簡單運用二次函數(shù)性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)性質(zhì).3、D【解析】

根據(jù)直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,可以判斷a、b的正負,從而可以判斷直線y=bx-a經(jīng)過哪幾個象限,不經(jīng)過哪個象限,本題得以解決.【詳解】∵直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,∴a<0,b>0,∴直線y=bx-a經(jīng)過第一、二、三象限,不經(jīng)過第四象限,故選D.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.4、A【解析】

由BD是∠ABC的角平分線,根據(jù)角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據(jù)兩直線平行,得到一對內(nèi)錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據(jù)等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質(zhì).學(xué)生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內(nèi)錯角相等,借助轉(zhuǎn)化的數(shù)學(xué)思想解決問題.這是一道較易的證明題,鍛煉了學(xué)生的邏輯思維能力.5、C【解析】

總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目.我們在區(qū)分總體、個體、樣本、樣本容量,這四個概念時,首先找出考查的對象.從而找出總體、個體.再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定出樣本容量.【詳解】樣本是被抽取的80名初三學(xué)生的體重,

故選C.【點睛】此題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關(guān)鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大?。畼颖救萘渴菢颖局邪膫€體的數(shù)目,不能帶單位.6、D【解析】分析:根據(jù)平均數(shù)、中位數(shù)、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學(xué)生的成績平均成績相同;根據(jù)中位數(shù)可以確定,乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù);根據(jù)方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數(shù)、中位數(shù)、方差等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.7、C【解析】如圖:分別作AC與AB的垂直平分線,相交于點O,則點O即是該圓弧所在圓的圓心.∵點A的坐標(biāo)為(﹣3,2),∴點O的坐標(biāo)為(﹣2,﹣1).故選C.8、C【解析】

根據(jù)中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.9、B【解析】

利用配方法求二次函數(shù)最值的方法解答即可.【詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來前進了20m.故選B.【點睛】此題主要考查了利用配方法求最值的問題,根據(jù)已知得出頂點式是解題關(guān)鍵.10、B【解析】

連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

由題意可得,△=9-4m≥0,由此求得m的范圍.【詳解】∵關(guān)于x的一元二次方程x2-3x+m=0有實數(shù)根,∴△=9-4m≥0,求得m≤.故答案為:【點睛】本題考核知識點:一元二次方程根判別式.解題關(guān)鍵點:理解一元二次方程根判別式的意義.12、1.【解析】

在Rt△ABC中,已知tanA,BC的值,根據(jù)tanA=,可將AC的值求出,再由勾股定理可將斜邊AB的長求出.【詳解】解:Rt△ABC中,∵BC=4,tanA=∴則故答案為1.【點睛】考查解直角三角形以及勾股定理,熟練掌握銳角三角函數(shù)是解題的關(guān)鍵.13、110【解析】試題解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考點:等腰三角形的性質(zhì)、三角形外角的性質(zhì)點評:本題主要考查了等腰三角形的性質(zhì)、三角形外角的性質(zhì).等腰三角形的兩個底角相等;三角形的外角等于與它不相鄰的兩個內(nèi)角之和.14、①③④【解析】

由M、N是BD的三等分點,得到DN=NM=BM,根據(jù)平行四邊形的性質(zhì)得到AB=CD,AB∥CD,推出△BEM∽△CDM,根據(jù)相似三角形的性質(zhì)得到,于是得到BE=AB,故①正確;根據(jù)相似三角形的性質(zhì)得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②錯誤;根據(jù)已知條件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正確;根據(jù)線段垂直平分線的性質(zhì)得到EB=EN,根據(jù)等腰三角形的性質(zhì)得到∠ENB=∠EBN,等量代換得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正確.【詳解】解:∵??M、N是BD的三等分點,∴DN=NM=BM,∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正確;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②錯誤;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正確;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正確;故答案為①③④.【點睛】考點:相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);平行四邊形的性質(zhì).15、【解析】

利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.16、【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】原式=2x(y2+2y+1)=2x(y+1)2,故答案為2x(y+1)2【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.17、向南走10km【解析】

分析:與北相反的方向是南,由題意,負數(shù)表示向北走,則正數(shù)就表示向南走,據(jù)此得出結(jié)論.詳解:∵向北走5km記作﹣5km,∴+10km表示向南走10km.故答案是:向南走10km.點睛:本題考查對相反意義量的認識:在一對具有相反意義的量中,先規(guī)定一個為正數(shù),則另一個就要用負數(shù)表示.三、解答題(共7小題,滿分69分)18、(1)小強的頭部點E與地面DK的距離約為144.5cm.(2)他應(yīng)向前9.5cm.【解析】試題分析:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.求出MF、FN的值即可解決問題;(2)求出OH、PH的值即可判斷;試題解析:解:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.∵EF+FG=166,F(xiàn)G=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此時小強頭部E點與地面DK相距約為144.5cm.(2)過點E作EP⊥AB于點P,延長OB交MN于H.∵AB=48,O為AB中點,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他應(yīng)向前9.5cm.19、(1)見解析;(2)見解析;(3)AB=1【解析】

(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據(jù)此可得2∠APG=∠F,據(jù)此即可得證;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設(shè)PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據(jù)此求得k=2,從而得出AP、BP的長,利用勾股定理可得答案.【詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設(shè)PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,則EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,則tan∠ABP=tan∠PEM,即,∴,則BP=3k,∴BE=k=2,則k=2,∴AP=3、BP=6,根據(jù)勾股定理得,AB=1.【點睛】本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓周角定理、四點共圓條件、相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識點.20、(1)見解析:(2)見解析.【解析】試題分析:(1)根據(jù)角平分線的作法作出∠BAE的平分線AP即可;(2)先證明△ABO≌△CBO,得到AO=CO,AB=CB,再證明△ABO≌△ADO,得到BO=DO.由對角線互相平分的四邊形是平行四邊形及有一組鄰邊相等的平行四邊形是菱形即可證明四邊形ABCD是菱形.試題解析:(1)如圖所示:(2)如圖:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,∵AB=CB,∴平行四邊形ABCD是菱形.考點:1.菱形的判定;2.作圖—基本作圖.21、(1)D(2,2);(2);(3)【解析】

(1)令x=0求出A的坐標(biāo),根據(jù)頂點坐標(biāo)公式或配方法求出頂點B的坐標(biāo)、對稱軸直線,根據(jù)點A與點D關(guān)于對稱軸對稱,確定D點坐標(biāo).(2)根據(jù)點B、D的坐標(biāo)用待定系數(shù)法求出直線BD的解析式,令y=0,即可求得M點的坐標(biāo).(3)根據(jù)點A、B的坐標(biāo)用待定系數(shù)法求出直線AB的解析式,求直線OD的解析式,進而求出交點N的坐標(biāo),得到ON的長.過A點作AE⊥OD,可證△AOE為等腰直角三角形,根據(jù)OA=2,可求得AE、OE的長,表示出EN的長.根據(jù)tan∠OMB=tan∠ONA,得到比例式,代入數(shù)值即可求得a的值.【詳解】(1)當(dāng)x=0時,,∴A點的坐標(biāo)為(0,2)∵∴頂點B的坐標(biāo)為:(1,2-a),對稱軸為x=1,∵點A與點D關(guān)于對稱軸對稱∴D點的坐標(biāo)為:(2,2)(2)設(shè)直線BD的解析式為:y=kx+b把B(1,2-a)D(2,2)代入得:,解得:∴直線BD的解析式為:y=ax+2-2a當(dāng)y=0時,ax+2-2a=0,解得:x=∴M點的坐標(biāo)為:(3)由D(2,2)可得:直線OD解析式為:y=x設(shè)直線AB的解析式為y=mx+n,代入A(0,2)B(1,2-a)可得:解得:∴直線AB的解析式為y=-ax+2聯(lián)立成方程組:,解得:∴N點的坐標(biāo)為:()ON=()過A點作AE⊥OD于E點,則△AOE為等腰直角三角形.∵OA=2∴OE=AE=,EN=ON-OE=()-=)∵M,C(1,0),B(1,2-a)∴MC=,BE=2-a∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴,即解得:a=或∵拋物線開口向下,故a<0,∴a=舍去,【點睛】本題是一道二次函數(shù)與一次函數(shù)及三角函數(shù)綜合題,掌握并靈活應(yīng)用二次函數(shù)與一次函數(shù)的圖象與性質(zhì),以及構(gòu)建直角三角形借助點的坐標(biāo)使用相等角的三角函數(shù)是解題的關(guān)鍵.22、(1)證明見解析;(2)結(jié)論:成立.理由見解析;(3)①30°,②1+.【解析】

(1)只要證明AB=ED,AB∥ED即可解決問題;(2)成立.如圖2中,過點M作MG∥DE交CE于G.由四邊形DMGE是平行四邊形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四邊形ABDE是平行四邊形;

(3)①如圖3中,取線段HC的中點I,連接MI,只要證明MI=AM,MI⊥AC,即可解決問題;②設(shè)DH=x,則AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四邊形ABDE是平行四邊形,推出DF∥AB,推出,可得,解方程即可;【詳解】(1)證明:如圖1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中線,且D與M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四邊形ABDE是平行四邊形.(2)結(jié)論:成立.理由如下:如圖2中,過點M作MG∥DE交CE于G.∵CE∥AM,∴四邊形DMGE是平行四邊形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四邊形ABDE是平行四邊形.(3)①如圖3中,取線段HC的中點I,連接MI,∵BM=MC,∴MI是△BHC的中位線,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②設(shè)DH=x,則AH=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論