廣西南寧市馬山縣2023年下學期初三數(shù)學試題聯(lián)考考試試卷含解析_第1頁
廣西南寧市馬山縣2023年下學期初三數(shù)學試題聯(lián)考考試試卷含解析_第2頁
廣西南寧市馬山縣2023年下學期初三數(shù)學試題聯(lián)考考試試卷含解析_第3頁
廣西南寧市馬山縣2023年下學期初三數(shù)學試題聯(lián)考考試試卷含解析_第4頁
廣西南寧市馬山縣2023年下學期初三數(shù)學試題聯(lián)考考試試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣西南寧市馬山縣2023年下學期初三數(shù)學試題聯(lián)考考試試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.2.如圖,已知點A、B、C、D在⊙O上,圓心O在∠D內(nèi)部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數(shù)和是()A.60° B.45° C.35° D.30°3.甲隊修路120m與乙隊修路100m所用天數(shù)相同,已知甲隊比乙隊每天多修10m,設甲隊每天修路xm.依題意,下面所列方程正確的是A.B. C.D.4.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m5.等腰三角形一邊長等于5,一邊長等于10,它的周長是()A.20 B.25 C.20或25 D.156.如圖,⊙O中,弦BC與半徑OA相交于點D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數(shù)是()A.25° B.27.5° C.30° D.35°7.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或58.已知:如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點G、D,若△AGC的周長為31cm,AB=20cm,則△ABC的周長為()A.31cm B.41cm C.51cm D.61cm9.已知x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,下列結論一定正確的是()A.x1≠x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<010.﹣的絕對值是()A.﹣ B. C.﹣2 D.211.由6個大小相同的正方體搭成的幾何體如圖所示,比較它的正視圖、左視圖和俯視圖的面積,則()A.三個視圖的面積一樣大 B.主視圖的面積最小C.左視圖的面積最小 D.俯視圖的面積最小12.如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻轉,得到的△DBC與原△ABC拼成四邊形ABDC,則能直接判定四邊形ABDC是菱形的依據(jù)是()A.四條邊相等的四邊形是菱形 B.一組鄰邊相等的平行四邊形是菱形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直平分的四邊形是菱形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.拋物線y=(x﹣2)2﹣3的頂點坐標是____.14.如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點.若四邊形EFGH為菱形,則對角線AC、BD應滿足條件_____.15.如圖,圓錐的表面展開圖由一扇形和一個圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個扇形的面積為.16.已知(x+y)2=25,(x﹣y)2=9,則x2+y2=_____.17.當x=_________時,分式的值為零.18.反比例函數(shù)y=的圖象是雙曲線,在每一個象限內(nèi),y隨x的增大而減小,若點A(–3,y1),B(–1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關系為__________.(用“<”連接)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側),連接OB,交反比例函數(shù)y=的圖象于點P.求反比例函數(shù)y=的表達式;求點B的坐標;求△OAP的面積.20.(6分)解分式方程:x+1x-1-21.(6分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.求小明選擇去白鹿原游玩的概率;用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.22.(8分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標軸的交點,直線與“果圓”中的拋物線交于兩點(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點,連接,設與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標,如果不存在,請說明理由23.(8分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數(shù)量關系以及PB與CD之間的數(shù)量關系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.24.(10分)甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.求從袋中隨機摸出一球,標號是1的概率;從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.25.(10分)計算下列各題:(1)tan45°?sin60°?cos30°;(2)sin230°+sin45°?tan30°.26.(12分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過點D作DE⊥AC,垂足為E.(1)證明:DE為⊙O的切線;(2)連接DC,若BC=4,求弧DC與弦DC所圍成的圖形的面積.27.(12分)某車間的甲、乙兩名工人分別同時生產(chǎn)只同一型號的零件,他們生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:(1)甲每分鐘生產(chǎn)零件_______只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件_______只;(2)若乙提高速度后,乙的生產(chǎn)速度是甲的倍,請分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關系式;(3)當兩人生產(chǎn)零件的只數(shù)相等時,求生產(chǎn)的時間;并求出此時甲工人還有多少只零件沒有生產(chǎn).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關鍵.2、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.3、A【解析】分析:甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數(shù)相同,所以,。故選A。4、D【解析】

解:設小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.5、B【解析】

題目中沒有明確腰和底,故要分情況討論,再結合三角形的三邊關系分析即可.【詳解】當5為腰時,三邊長為5、5、10,而,此時無法構成三角形;當5為底時,三邊長為5、10、10,此時可以構成三角形,它的周長故選B.6、D【解析】分析:直接利用三角形外角的性質以及鄰補角的關系得出∠B以及∠ODC度數(shù),再利用圓周角定理以及三角形內(nèi)角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點睛:此題主要考查了圓周角定理以及三角形內(nèi)角和定理等知識,正確得出∠AOC度數(shù)是解題關鍵.7、D【解析】

由解析式可知該函數(shù)在時取得最小值0,拋物線開口向上,當時,y隨x的增大而增大;當時,y隨x的增大而減?。桓鶕?jù)時,函數(shù)的最小值為4可分如下三種情況:①若,時,y取得最小值4;②若-1<h<3時,當x=h時,y取得最小值為0,不是4;③若,當x=3時,y取得最小值4,分別列出關于h的方程求解即可.【詳解】解:∵當x>h時,y隨x的增大而增大,當時,y隨x的增大而減小,并且拋物線開口向上,

∴①若,當時,y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時,當x=h時,y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當x=3時,y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【點睛】本題主要考查二次函數(shù)的性質和最值,根據(jù)二次函數(shù)的性質和最值分類討論是解題的關鍵.8、C【解析】∵DG是AB邊的垂直平分線,∴GA=GB,△AGC的周長=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周長=AC+BC+AB=51cm,故選C.9、A【解析】分析:A、根據(jù)方程的系數(shù)結合根的判別式,可得出△>0,由此即可得出x1≠x2,結論A正確;B、根據(jù)根與系數(shù)的關系可得出x1+x2=a,結合a的值不確定,可得出B結論不一定正確;C、根據(jù)根與系數(shù)的關系可得出x1?x2=﹣2,結論C錯誤;D、由x1?x2=﹣2,可得出x1<0,x2>0,結論D錯誤.綜上即可得出結論.詳解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,結論A正確;B、∵x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,∴x1+x2=a,∵a的值不確定,∴B結論不一定正確;C、∵x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,∴x1?x2=﹣2,結論C錯誤;D、∵x1?x2=﹣2,∴x1<0,x2>0,結論D錯誤.故選A.點睛:本題考查了根的判別式以及根與系數(shù)的關系,牢記“當△>0時,方程有兩個不相等的實數(shù)根”是解題的關鍵.10、B【解析】

根據(jù)求絕對值的法則,直接計算即可解答.【詳解】,故選:B.【點睛】本題主要考查求絕對值的法則,掌握負數(shù)的絕對值等于它的相反數(shù),是解題的關鍵.11、C【解析】試題分析:根據(jù)三視圖的意義,可知正視圖由5個面,左視圖有3個面,俯視圖有4個面,故可知主視圖的面積最大.故選C考點:三視圖12、A【解析】

根據(jù)翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根據(jù)菱形的判定推出即可.【詳解】∵

△ABC

延底邊

BC

翻折得到

△DBC

,∴AB=BD

AC=CD

,∵AB=AC

,∴AB=BD=CD=AC

,∴

四邊形

ABDC

是菱形;故選A.【點睛】本題考查了菱形的判定方法:四邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(2,﹣3)【解析】

根據(jù):對于拋物線y=a(x﹣h)2+k的頂點坐標是(h,k).【詳解】拋物線y=(x﹣2)2﹣3的頂點坐標是(2,﹣3).故答案為(2,﹣3)【點睛】本題考核知識點:拋物線的頂點.解題關鍵點:熟記求拋物線頂點坐標的公式.14、AC=BD.【解析】試題分析:添加的條件應為:AC=BD,把AC=BD作為已知條件,根據(jù)三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形.試題解析:添加的條件應為:AC=BD.證明:∵E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點,∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,則HG∥EF且HG=EF,∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,∴四邊形EFGH為菱形.考點:1.菱形的性質;2.三角形中位線定理.15、300π【解析】試題分析:首先根據(jù)底面圓的面積求得底面的半徑,然后結合弧長公式求得扇形的半徑,然后利用扇形的面積公式求得側面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長等于圓的周長為20π,設扇形的母線長為r,則=20π,解得:母線長為30,∴扇形的面積為πrl=π×10×30=300π考點:(1)、圓錐的計算;(2)、扇形面積的計算16、17【解析】

先利用完全平方公式展開,然后再求和.【詳解】根據(jù)(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【點睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等價變形:,,.17、2【解析】

根據(jù)若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1計算即可.【詳解】解:依題意得:2﹣x=1且2x+2≠1.解得x=2,故答案為2.【點睛】本題考查的是分式為1的條件和一元二次方程的解法,掌握若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1是解題的關鍵.18、y2<y1<y1.【解析】

先根據(jù)反比例函數(shù)的增減性判斷出2-m的符號,再根據(jù)反比例函數(shù)的性質判斷出此函數(shù)圖象所在的象限,由各點橫坐標的值進行判斷即可.【詳解】∵反比例函數(shù)y=的圖象是雙曲線,在每一個象限內(nèi),y隨x的增大而減小,∴2?m>0,∴此函數(shù)的圖象在一、三象限,∵?1<?1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】本題考查的知識點是反比例函數(shù)圖像上點的坐標特征,解題的關鍵是熟練的掌握列反比例函數(shù)圖像上點的坐標特征.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)反比例函數(shù)解析式為y=;(2)點B的坐標為(9,3);(3)△OAP的面積=1.【解析】

(1)將點A的坐標代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x軸即可得點B的坐標;(3)先根據(jù)點B坐標得出OB所在直線解析式,從而求得直線與雙曲線交點P的坐標,再利用割補法求解可得.【詳解】(1)將點A(4,3)代入y=,得:k=12,則反比例函數(shù)解析式為y=;(2)如圖,過點A作AC⊥x軸于點C,則OC=4、AC=3,∴OA==1,∵AB∥x軸,且AB=OA=1,∴點B的坐標為(9,3);(3)∵點B坐標為(9,3),∴OB所在直線解析式為y=x,由可得點P坐標為(6,2),(負值舍去),過點P作PD⊥x軸,延長DP交AB于點E,則點E坐標為(6,3),∴AE=2、PE=1、PD=2,則△OAP的面積=×(2+6)×3﹣×6×2﹣×2×1=1.【點睛】本題考查了反比例函數(shù)與幾何圖形綜合,熟練掌握反比例函數(shù)圖象上點的坐標特征、正確添加輔助線是解題的關鍵.20、方程無解【解析】

找出分式方程的最簡公分母,去分母后轉化為整式方程,求出整式方程的解得到x的值,再代入最簡公分母進行檢驗即可.【詳解】解:方程的兩邊同乘(x+1)(x?1),得:x+12x2x2∴此方程無解【點睛】本題主要考查了解分式方程,解分式方程的步驟:①去分母;②解整式方程;③驗根.21、(1);(2)【解析】

(1)利用概率公式直接計算即可;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率.22、(1);6;(2)有最小值;(3),.【解析】

(1)先求出點B,C坐標,利用待定系數(shù)法求出拋物線解析式,進而求出點A坐標,即可求出半圓的直徑,再構造直角三角形求出點D的坐標即可求出BD;

(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個交點,求出直線EG解析式,即可求出CG,結論得證.

(3)求出線段AC,BC進而判斷出滿足條件的一個點P和點B重合,再利用拋物線的對稱性求出另一個點P.【詳解】解:(1)對于直線y=x-3,令x=0,

∴y=-3,

∴B(0,-3),

令y=0,

∴x-3=0,

∴x=4,

∴C(4,0),

∵拋物線y=x2+bx+c過B,C兩點,∴∴∴拋物線的解析式為y=;令y=0,

∴=0,∴x=4或x=-1,

∴A(-1,0),

∴AC=5,

如圖2,記半圓的圓心為O',連接O'D,

∴O'A=O'D=O'C=AC=,

∴OO'=OC-O'C=4-=,

在Rt△O'OD中,OD==2,∴D(0,2),

∴BD=2-(-3)=5;(2)如圖3,

∵A(-1,0),C(4,0),

∴AC=5,

過點E作EG∥BC交x軸于G,

∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設高為h,

∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個交點時,CG最大,

∵直線BC的解析式為y=x-3,

設直線EG的解析式為y=x+m①,

∵拋物線的解析式為y=x2-x-3②,

聯(lián)立①②化簡得,3x2-12x-12-4m=0,

∴△=144+4×3×(12+4m)=0,

∴m=-6,

∴直線EG的解析式為y=x-6,

令y=0,

∴x-6=0,

∴x=8,

∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,

∴半圓上除點A,C外任意一點Q,都有∠AQC=90°,

∴點P只能在拋物線部分上,

∵B(0,-3),C(4,0),

∴BC=5,

∵AC=5,

∴AC=BC,

∴∠BAC=∠ABC,

當∠APC=∠CAB時,點P和點B重合,即:P(0,-3),

由拋物線的對稱性知,另一個點P的坐標為(3,-3),

即:使∠APC=∠CAB,點P坐標為(0,-3)或(3,-3).【點睛】本題是二次函數(shù)綜合題,考查待定系數(shù)法,圓的性質,勾股定理,相似三角形的判定和性質,拋物線的對稱性,等腰三角形的判定和性質,判斷出CG最大時,兩三角形面積之比最小是解本題的關鍵.23、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】

(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質得到,得到ABP∽△CAD,根據(jù)相似三角形的性質得到結論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質即可得到結論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點睛】本題考查了等腰直角三角形的性質,全等三角形的判定和性質,相似三角形的判定和性質,勾股定理,熟練掌握相似三角形的判定和性質是解題的關鍵.24、(1);(2)這個游戲不公平,理由見解析.【解析】

(1)由把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與甲勝,乙勝的情況,即可求得求概率,比較大小,即可知這個游戲是否公平.【詳解】解:(1)由于三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,故從袋中隨機摸出一球,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論