版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.設x1,x2是方程x2-2x-1=0的兩個實數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或52.如圖,在平面直角坐標系xOy中,△由△繞點P旋轉(zhuǎn)得到,則點P的坐標為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)3.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x14.用半徑為8的半圓圍成一個圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.85.一條數(shù)學信息在一周內(nèi)被轉(zhuǎn)發(fā)了2180000次,將數(shù)據(jù)2180000用科學記數(shù)法表示為()A.2.18×106B.2.18×105C.21.8×106D.21.8×1056.已知,則的值為A. B. C. D.7.若x,y的值均擴大為原來的3倍,則下列分式的值保持不變的是()A. B. C. D.8.下列事件是必然事件的是()A.任意作一個平行四邊形其對角線互相垂直B.任意作一個矩形其對角線相等C.任意作一個三角形其內(nèi)角和為D.任意作一個菱形其對角線相等且互相垂直平分9.如圖,等邊△ABC的邊長為4,點D,E分別是BC,AC的中點,動點M從點A向點B勻速運動,同時動點N沿B﹣D﹣E勻速運動,點M,N同時出發(fā)且運動速度相同,點M到點B時兩點同時停止運動,設點M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數(shù)關系的圖象是()A. B.C. D.10.一個圓錐的底面半徑為,母線長為6,則此圓錐的側(cè)面展開圖的圓心角是()A.180° B.150° C.120° D.90°11.已知一次函數(shù)y=kx+3和y=k1x+5,假設k<0且k1>0,則這兩個一次函數(shù)的圖像的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.計算-5+1的結(jié)果為()A.-6 B.-4 C.4 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式8x2y﹣2y=_____.14.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.15.不等式組的解集是_____.16.________.17.如圖,已知直線m∥n,∠1=100°,則∠2的度數(shù)為_____.18.在日本核電站事故期間,我國某監(jiān)測點監(jiān)測到極微量的人工放射性核素碘﹣131,其濃度為0.0000872貝克/立方米.數(shù)據(jù)“0.0000872”用科學記數(shù)法可表示為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數(shù)繪制成如圖所示的折線統(tǒng)計圖.(1)根據(jù)圖中所給信息填寫下表:投中個數(shù)統(tǒng)計平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.20.(6分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.21.(6分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產(chǎn)加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?22.(8分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經(jīng)過的路徑弧EQ的長(結(jié)果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.23.(8分)如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.求該拋物線的表達式;點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.24.(10分)某公司投入研發(fā)費用80萬元(80萬元只計入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為6元/件.此產(chǎn)品年銷售量y(萬件)與售價x(元/件)之間滿足函數(shù)關系式y(tǒng)=﹣x+1.求這種產(chǎn)品第一年的利潤W1(萬元)與售價x(元/件)滿足的函數(shù)關系式;該產(chǎn)品第一年的利潤為20萬元,那么該產(chǎn)品第一年的售價是多少?第二年,該公司將第一年的利潤20萬元(20萬元只計入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為5元/件.為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價不超過第一年的售價,另外受產(chǎn)能限制,銷售量無法超過12萬件.請計算該公司第二年的利潤W2至少為多少萬元.25.(10分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點B坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數(shù)和一次函數(shù)的解析式;求△AOB的面積;點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.26.(12分)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD交于點M,點E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.27.(12分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.特例探索(1)如圖1,當∠ABE=45°,c=時,a=,b=;如圖2,當∠ABE=10°,c=4時,a=,b=;歸納證明(2)請你觀察(1)中的計算結(jié)果,猜想a2,b2,c2三者之間的關系,用等式表示出來,請利用圖1證明你發(fā)現(xiàn)的關系式;拓展應用(1)如圖4,在□ABCD中,點E,F(xiàn),G分別是AD,BC,CD的中點,BE⊥EG,AD=,AB=1.求AF的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.2、B【解析】試題分析:根據(jù)網(wǎng)格結(jié)構(gòu),找出對應點連線的垂直平分線的交點即為旋轉(zhuǎn)中心.試題解析:由圖形可知,對應點的連線CC′、AA′的垂直平分線過點(0,-1),根據(jù)旋轉(zhuǎn)變換的性質(zhì),點(1,-1)即為旋轉(zhuǎn)中心.故旋轉(zhuǎn)中心坐標是P(1,-1)故選B.考點:坐標與圖形變化—旋轉(zhuǎn).3、D【解析】
先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限及在每一象限內(nèi)函數(shù)的增減性,再根據(jù)y1<0<y2<y3判斷出三點所在的象限,故可得出結(jié)論.【詳解】解:∵反比例函數(shù)y=﹣中k=﹣1<0,∴此函數(shù)的圖象在二、四象限,且在每一象限內(nèi)y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限是解答此題的關鍵.4、A【解析】
由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點睛】此題主要考查了圓錐側(cè)面展開扇形與底面圓之間的關系,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關鍵是應用半圓的弧長=圓錐的底面周長.5、A【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】2180000的小數(shù)點向左移動6位得到2.18,所以2180000用科學記數(shù)法表示為2.18×106,故選A.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.6、C【解析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.7、D【解析】
根據(jù)分式的基本性質(zhì),x,y的值均擴大為原來的3倍,求出每個式子的結(jié)果,看結(jié)果等于原式的即是答案.【詳解】根據(jù)分式的基本性質(zhì),可知若x,y的值均擴大為原來的3倍,A、,錯誤;B、,錯誤;C、,錯誤;D、,正確;故選D.【點睛】本題考查的是分式的基本性質(zhì),即分子分母同乘以一個不為0的數(shù),分式的值不變.此題比較簡單,但計算時一定要細心.8、B【解析】
必然事件就是一定發(fā)生的事件,根據(jù)定義對各個選項進行判斷即可.【詳解】解:A、任意作一個平行四邊形其對角線互相垂直不一定發(fā)生,是隨機事件,故本選項錯誤;B、矩形的對角線相等,所以任意作一個矩形其對角線相等一定發(fā)生,是必然事件,故本選項正確;C、三角形的內(nèi)角和為180°,所以任意作一個三角形其內(nèi)角和為是不可能事件,故本選項錯誤;D、任意作一個菱形其對角線相等且互相垂直平分不一定發(fā)生,是隨機事件,故選項錯誤,故選:B.【點睛】解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.熟練掌握相關圖形的性質(zhì)也是解題的關鍵.9、A【解析】
根據(jù)題意,將運動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點D到AB距離為,當0≤x≤2時,y=;當2≤x≤4時,y=.根據(jù)函數(shù)解析式,A符合條件.故選A.【點睛】本題為動點問題的函數(shù)圖象,解答關鍵是找到動點到達臨界點前后的一般圖形,分類討論,求出函數(shù)關系式.10、B【解析】
解:,解得n=150°.故選B.考點:弧長的計算.11、B【解析】
依題意在同一坐標系內(nèi)畫出圖像即可判斷.【詳解】根據(jù)題意可作兩函數(shù)圖像,由圖像知交點在第二象限,故選B.【點睛】此題主要考查一次函數(shù)的圖像,解題的關鍵是根據(jù)題意作出相應的圖像.12、B【解析】
根據(jù)有理數(shù)的加法法則計算即可.【詳解】解:-5+1=-(5-1)=-1.故選B.【點睛】本題考查了有理數(shù)的加法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2y(2x+1)(2x﹣1)【解析】
首先提取公因式2y,再利用平方差公式分解因式得出答案.【詳解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案為2y(2x+1)(2x-1).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.14、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.15、2<x≤1【解析】
本題可根據(jù)不等式組分別求出每一個不等式的解集,然后即可確定不等式組的解集.【詳解】由①得x>2,由②得x≤1,∴不等式組的解集為2<x≤1.故答案為:2<x≤1.【點睛】此題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).16、1【解析】
先將二次根式化為最簡,然后再進行二次根式的乘法運算即可.【詳解】解:原式=2×=1.故答案為1.【點睛】本題考查了二次根式的乘法運算,屬于基礎題,掌握運算法則是關鍵.17、80°.【解析】
如圖,已知m∥n,根據(jù)平行線的性質(zhì)可得∠1=∠3,再由平角的定義即可求得∠2的度數(shù).【詳解】如圖,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案為80°.【點睛】本題考查了平行線的性質(zhì),熟練運用平行線的性質(zhì)是解決問題的關鍵.18、【解析】
科學記數(shù)法的表示形式為ax10n的形式,其中1≤lal<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:0.0000872=故答案為:【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)7,9,7;(2)應該選派B;【解析】
(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;(2)利用方差的意義分析得出答案.【詳解】(1)A成績的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;B成績排序后為6,7,7,7,7,8,故中位數(shù)為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩(wěn)定,從投籃穩(wěn)定性考慮應該選派B.【點睛】此題主要考查了中位數(shù)、眾數(shù)、方差的定義,方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.20、(1)見解析;(2)70°;(3)1.【解析】
(1)先根據(jù)等邊對等角得出∠B=∠D,即可得出結(jié)論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結(jié)論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結(jié)論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內(nèi)接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據(jù)勾股定理得,AB=,∴OA=OC=AB=,∵點C是的中點,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點睛】本題是幾何綜合題,涉及了圓的性質(zhì),圓周角定理,勾股定理,銳角三角函數(shù),相似三角形的判定和性質(zhì),圓內(nèi)接四邊形的性質(zhì),等腰三角形的性質(zhì)等,綜合性較強,有一定的難度,熟練掌握和靈活運用相關知識是解題的關鍵.本題中求出BE=2也是解題的關鍵.21、20千米【解析】
由勾股定理兩直角邊的平方和等于斜邊的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜邊相等兩次利用勾股定理得到AD2+AE2=BE2+BC2,設AE為x,則BE=10﹣x,將DA=8,CB=2代入關系式即可求得.【詳解】解:設基地E應建在離A站x千米的地方.則BE=(50﹣x)千米在Rt△ADE中,根據(jù)勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根據(jù)勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D兩村到E點的距離相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E應建在離A站20千米的地方.考點:勾股定理的應用.22、(1)1213;(2)5π;(3)PB的值為10526或【解析】
(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質(zhì)可得出對應邊相等,根據(jù)勾股定理可求出AM的值,即可得出結(jié)論;(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計算公式即可得出結(jié)論;(3)當點Q落在直線AB上時,根據(jù)相似三角形的性質(zhì)可得對應邊成比例,即可求出PB的值;當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G,設PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對應邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當點Q落在直線AB上時,∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G.設PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【點睛】本題考查了相似三角形與全等三角形的性質(zhì),解題的關鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì).23、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解析】
(1)將點A、B坐標代入二次函數(shù)表達式,即可求出二次函數(shù)解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1,設點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設直線BP與CD交于點H,當點P在直線BC下方時,求出線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當點P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點A、B坐標代入二次函數(shù)表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1…②,設點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當t=﹣時,其最大值為;②設直線BP與CD交于點H,當點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設BC中垂線的表達式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點P(﹣,﹣);當點P(P′)在直線BC上方時,∵∠PBC=∠BCD,∴BP′∥CD,則直線BP′的表達式為:y=2x+s,將點B坐標代入上式并解得:s=5,即直線BP′的表達式為:y=2x+5…⑥,聯(lián)立①⑥并解得:x=0或﹣4(舍去﹣4),故點P(0,5);故點P的坐標為P(﹣,﹣)或(0,5).【點睛】本題考查的是二次函數(shù),熟練掌握拋物線的性質(zhì)是解題的關鍵.24、(1)W1=﹣x2+32x﹣2;(2)該產(chǎn)品第一年的售價是16元;(3)該公司第二年的利潤W2至少為18萬元.【解析】
(1)根據(jù)總利潤=每件利潤×銷售量﹣投資成本,列出式子即可;(2)構(gòu)建方程即可解決問題;(3)根據(jù)題意求出自變量的取值范圍,再根據(jù)二次函數(shù),利用而學會設的性質(zhì)即可解決問題.【詳解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由題意:20=﹣x2+32x﹣2.解得:x=16,答:該產(chǎn)品第一年的售價是16元.(3)由題意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7時,W2有最小值,最小值=18(萬元),答:該公司第二年的利潤W2至少為18萬元.【點睛】本題考查二次函數(shù)的應用、一元二次方程的應用等知識,解題的關鍵是理解題意,學會構(gòu)建方程或函數(shù)解決問題.25、(1)y=﹣,y=﹣x+2;(2)6;(3)當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【解析】
(1)利用待定系數(shù)法,即可得到反比例函數(shù)和一次函數(shù)的解析式;(2)利用一次函數(shù)解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類討論:當AO為等腰三角形腰與底時,求出點E坐標即可.【詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點:n=3×(﹣2)=﹣6,所以反比例函數(shù)解析式為:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分別代入y=kx+b,得:,解得:,所以一次函數(shù)解析式為:y=﹣x+2;(2)當y=0時,﹣x+2=0,解得:x=4,則C(4,0),所以;(3)當OE3=OE2=AO=,即E2(﹣,0),E3(,0);當OA=AE1=時,得到OE1=2OD=4,即E1(﹣4,0);當AE4=OE4時,由A(﹣2,3),O(0,0),得到直線AO解析式為y=﹣x,中點坐標為(﹣1,1.5),令y=0,得到y(tǒng)=﹣,即E4(﹣,0),綜上,當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟練掌握各自的性質(zhì)是解題的關鍵.26、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,結(jié)合∠DCB=∠DAE可得出∠DCB=∠AEB,進而可得出AE∥DC、△AMF∽△CMD,根據(jù)相似三角形的性質(zhì)可得出=,根據(jù)AD∥BC,可得出△AMD∽△CMB,根據(jù)相似三角形的性質(zhì)可得出=,進而可得出=,即MD2=MF?MB;(2)設FM=a,則BF=3a,BM=4a.由(1)的結(jié)論可求出MD的長度,代
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026一季度重慶市屬事業(yè)單位公開招聘242人考試參考試題及答案解析
- 2026安徽合肥國家實驗室技術(shù)支撐崗位招聘1人光學工程師備考考試題庫及答案解析
- 2025四川綿陽科技城新區(qū)投資控股(集團)有限公司(含所屬公司)人力資源需求外部招聘暨市場化選聘(第三批次)部分崗位招聘延期考試參考試題及答案解析
- 2026山東青島嶗山區(qū)事業(yè)單位招聘工作人員34人備考題庫及完整答案詳解一套
- 2026年上半年云南能源職業(yè)技術(shù)學院招聘人員備考題庫(21人)有完整答案詳解
- 2025年互聯(lián)網(wǎng)數(shù)據(jù)中心安全防護操作手冊
- 2026年家庭電器使用與維護試題庫及答案
- 2026吉林長春汽車經(jīng)濟技術(shù)開發(fā)區(qū)招聘編制外輔助崗位人員69人備考題庫及一套參考答案詳解
- 2026山東威海市乳山鑫蜜客人力資源有限公司招聘派遣至乳山市屬國有企業(yè)3人備考題庫及完整答案詳解
- 2025四川宜賓市興文生態(tài)環(huán)境監(jiān)測站見習崗位募集計劃2人備考題庫及答案詳解(新)
- 000現(xiàn)行有效的國鐵集團技術(shù)標準目錄(截止2024-12-31、共1240項)
- 2025年司機崗前培訓試卷及答案
- 2025年村干部考試測試題及答案
- 水工金屬結(jié)構(gòu)制造安裝質(zhì)量檢驗檢測規(guī)程(2025版)
- 小學科學實驗課程活動設計
- 大體積混凝土施工裂縫防治技術(shù)研究
- 感染性心內(nèi)膜炎護理查房
- 導管相關皮膚損傷患者的護理 2
- 審計數(shù)據(jù)管理辦法
- 建筑設計防火規(guī)范-實施指南
- 口腔修復臨床病例
評論
0/150
提交評論