基于圖半監(jiān)督學(xué)習(xí)的醫(yī)學(xué)圖像檢索_第1頁(yè)
基于圖半監(jiān)督學(xué)習(xí)的醫(yī)學(xué)圖像檢索_第2頁(yè)
基于圖半監(jiān)督學(xué)習(xí)的醫(yī)學(xué)圖像檢索_第3頁(yè)
基于圖半監(jiān)督學(xué)習(xí)的醫(yī)學(xué)圖像檢索_第4頁(yè)
基于圖半監(jiān)督學(xué)習(xí)的醫(yī)學(xué)圖像檢索_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于圖半監(jiān)督學(xué)習(xí)的醫(yī)學(xué)圖像檢索Chapter1:Introduction

-Backgroundofmedicalimageretrieval

-Motivationforusingsemi-supervisedlearninginmedicalimageretrieval

-Objectivesandcontributionsofthepaper

-Overviewofthepaperstructure

Chapter2:RelatedWork

-Briefsurveyoftraditionalmethodsofmedicalimageretrieval

-Overviewofsemi-supervisedlearning

-Previousresearchonsemi-supervisedlearninginmedicalimageretrieval

Chapter3:Methodology

-Descriptionofthedatasetused

-Overviewofgraph-basedsemi-supervisedlearning

-Explanationofhowthealgorithmisappliedtothedataset

-Discussionofthekeyfeaturesusedinthealgorithm

Chapter4:ExperimentalResults

-Summaryoftheexperimentalsetup

-Comparisonoftheproposedmethodwithtraditionalmethodsandothersemi-supervisedmethods

-Analysisoftheresults

-Discussionofthelimitationsoftheproposedapproach

Chapter5:Conclusion

-Reviewoftheobjectivesandcontributionsofthepaper

-Summaryofthemainfindings

-Discussionofthesignificanceoftheresultsformedicalimageretrieval

-Suggestionsforfutureresearch.Chapter1:Introduction

Medicalimageretrievalhasbecomeanincreasinglyimportantareaofresearchduetothegrowinguseofmedicalimagingindiagnosisandtreatment.Medicalimagingproduceslargeamountsofdata,andeffectiveretrievalofrelevantimagesiscriticalforeffectiveutilizationoftheseresources.Traditionalmethodsofimageretrievalhavereliedmainlyontheuseoftextualattributestosearchforimages,whichoftenfallsshortincapturingthecomplexandrichinformationcontainedinmedicalimages.Thus,thereisaneedfornewandmoresophisticatedmethodsofmedicalimageretrievalthatcanmakeuseoftherawimagedata.

Themotivationforthispaperistoexploretheuseofsemi-supervisedlearninginmedicalimageretrieval.Semi-supervisedlearningisaformofmachinelearningthatcombineslabeledandunlabeleddatatoimprovetheperformanceofmodels.Inmedicalimageretrieval,wherelabeleddataisoftenlimitedandexpensivetoobtain,semi-supervisedlearningpresentsapromisingapproachforutilizingthevastamountsofunlabeleddatathatisavailable.

Theobjectiveofthispaperistoproposeanewmethodofmedicalimageretrievalusinggraph-basedsemi-supervisedlearning.Theproposedmethodutilizesbothlabeledandunlabeleddatatolearnrelationshipsbetweenimages,andusesagraphstructuretorepresenttheserelationships.Thecontributionsofthispaperincludetheintroductionofanoveltechniqueformedicalimageretrievalthatismoreeffectivethantraditionalmethodsandcanmakeuseoflargeamountsofunlabeleddata.Additionally,thispaperevaluatestheeffectivenessofgraph-basedsemi-supervisedlearningformedicalimageretrievalandprovidesinsightsintothelimitationsandpotentialareasforimprovement.

Thepaperisstructuredasfollows.Chapter2providesabriefsurveyoftraditionalmethodsofmedicalimageretrieval,anoverviewofsemi-supervisedlearning,andpreviousresearchonsemi-supervisedlearninginmedicalimageretrieval.Chapter3explainsthemethodologyusedintheproposedalgorithm,includingthedatasetused,graph-basedsemi-supervisedlearning,andthekeyfeaturesusedinthealgorithm.Chapter4presentstheexperimentalresults,includingasummaryoftheexperimentalsetup,acomparisonoftheproposedmethodwithtraditionalandothersemi-supervisedmethods,ananalysisoftheresults,andlimitationsoftheproposedapproach.Finally,Chapter5concludesthepaperbysummarizingthemainfindings,discussingthesignificanceoftheresultsinthecontextofmedicalimageretrieval,andprovidingsuggestionsforfutureresearch.Chapter2:LiteratureReview

2.1TraditionalMethodsofMedicalImageRetrieval

Traditionalmethodsofmedicalimageretrievalhavemainlyreliedontheuseoftextualattributessuchaskeywords,descriptions,andmeta-datatosearchforimages.Thesemethodshaveseverallimitations,includingtheinabilitytocapturethecomplexandrichinformationcontainedinmedicalimages.Additionally,thesemethodsareoftenreliantonhumaninput,whichcanbesubjectiveandpronetoerrors.

2.2Semi-SupervisedLearning

Semi-supervisedlearningisaformofmachinelearningthatusesbothlabeledandunlabeleddatatoimprovetheperformanceofmodels.Insemi-supervisedlearning,themodelistrainedtolearnrelationshipsbetweenthelabeledandunlabeleddata,allowingittogeneralizetonewandunseendata.

2.3PreviousResearchonSemi-SupervisedLearninginMedicalImageRetrieval

Severalstudieshaveexploredtheuseofsemi-supervisedlearninginmedicalimageretrieval.Forexample,Songetal.(2018)proposedamethodthatusesadeepconvolutionalneuralnetwork(CNN)andgraph-basedsemi-supervisedlearningtoimprovemedicalimageretrieval.Themethodusedagraphstructuretorepresentthesimilaritiesandrelationshipsbetweenimages,allowingfortheuseofbothlabeledandunlabeleddata.Theresultsshowedthatthemethodoutperformedtraditionalmethodsofmedicalimageretrieval.

Similarly,Chenetal.(2016)proposedamethodthatutilizesjointspectralclusteringandmanifoldregularizationtoimprovemedicalimageretrieval.Themethodusedagraphstructuretorepresenttherelationshipsbetweenimagesandlearnedalow-dimensionalrepresentationofthedatatoimproveretrievalperformance.Theresultsshowedthattheproposedmethodoutperformedtraditionalmethodsofmedicalimageretrieval.

Otherstudieshaveexploredtheuseofsemi-supervisedlearningforspecificmedicalimageretrievaltasks,suchastumordetection(Wangetal.,2018)andmammography(Zhangetal.,2017).Thesestudieshavedemonstratedtheeffectivenessofsemi-supervisedlearninginimprovingmedicalimageretrievalperformance.

2.4LimitationsofPreviousResearch

Whilepreviousresearchhasdemonstratedtheeffectivenessofsemi-supervisedlearninginmedicalimageretrieval,thereareseverallimitationstoconsider.Onelimitationistheneedforlargeamountsofunlabeleddata,whichcanbedifficultandexpensivetoobtaininsomemedicaldomains.Additionally,theeffectivenessofsemi-supervisedlearningmaybelimitedbythecomplexityandvariabilityofmedicalimages,whichcanmakeitdifficulttolearnrelationshipsbetweenimages.

Anotherlimitationisthepotentialforoverfitting,whichcanoccurwhenthemodelisover-parameterizedorhasaccesstotoomuchunlabeleddata.Overfittingcanleadtopoorgeneralizationperformanceandmayrequirecarefultuningofhyperparameterstomitigate.

Overall,whilesemi-supervisedlearningshowspromiseforimprovingmedicalimageretrieval,thereisstillaneedforfurtherresearchtoaddresstheselimitationsandoptimizetheapproachforuseindifferentmedicaldomains.Chapter3:Methodology

3.1DataCollection

Thefirststepinourmethodologyistocollectmedicalimagesandrelatedmeta-data.Wewillcollectimagesfromvariousmedicaldomainssuchasradiology,cardiology,andneurology.Theimageswillbeannotatedwithmeta-dataincludingclinicalinformationsuchaspatientage,gender,andmedicalhistory.

3.2DataPreprocessing

Aftercollectingthedata,wewillpreprocesstheimagesandmeta-datatopreparethemforuseinoursemi-supervisedlearningmodel.Thiswillincluderesizingandnormalizingtheimagestoafixedsize,extractingfeaturesfromtheimagesusingapre-trainedCNN,andencodingthemeta-dataasnumericalvalues.

3.3Semi-SupervisedLearningModel

Ourproposedmethodwilluseadeepneuralnetwork,specificallyavariantoftheGraphConvolutionalNetwork(GCN),toperformmedicalimageretrieval.TheGCNisatypeofneuralnetworkthatcanefficientlyprocessgraph-likestructures,suchasthesimilaritygraphofmedicalimages.

Ourmodelwillbetrainedusingacombinationoflabeledandunlabeledexamples.Thelabeledexampleswillconsistofasmallsetofimageswithassociatedmeta-datathathavebeenmanuallyannotatedbyexperts.Theunlabeledexampleswillconsistoftheremainingimageswithoutmeta-dataorannotations.TheGCNwilllearntopropagateinformationacrossthesimilaritygraph,allowingittogeneralizetounseenexamples.

Toimprovethemodel'saccuracyandgeneralizationperformance,wewillemployseveralsemi-supervisedlearningtechniquessuchasself-training,co-training,andgraphregularization.Thesetechniquesenablethemodeltolearnfrombothlabeledandunlabeledexamples,improvetherobustnessofthemodeltonoiseandoutliers,andavoidoverfitting.

3.4EvaluationMetrics

Toevaluatetheperformanceofourmodel,wewilluseseveralstandardmetricsusedininformationretrievalsuchasprecision,recall,andF1-score.Additionally,wewilluseimage-levelandcase-levelretrievalevaluation.

Attheimage-level,wewillmeasuretheaccuracyofretrievingrelevantimagescomparedtothegroundtruthannotations.Atthecase-level,wewillmeasuretheaccuracyofretrievingrelevantcasesbasedontheclinicalinformationassociatedwiththeimages.

3.5ImplementationDetails

OurmodelwillbeimplementedusingTensorFlow,apopulardeeplearningframework.WewilltrainthemodelonaGPU-enabledcomputeclustertoacceleratethetrainingprocess.Wewillalsousestandardmachinelearninglibrariessuchasscikit-learnandNumPyfordatapreprocessing,featureextraction,andevaluation.

3.6ExpectedResults

Itisexpectedthatourproposedsemi-supervisedlearningmodelwilloutperformtraditionalmethodsofmedicalimageretrievalandotherstate-of-the-artmethodsthatdonotincorporatesemi-supervisedlearning.Weexpectthemodeltoimproveaccuracy,reduceoverfitting,andimprovegeneralizationperformance.

Additionally,weexpectourmodeltoberobusttonoiseandoutliersandcapableofhandlinglargeamountsofunlabeleddata.Thiscouldleadtoreducedannotationcostsandimprovedretrievalperformanceinavarietyofmedicaldomains.Chapter4:ResultsandDiscussion

Inthischapter,wewillpresenttheresultsofourproposedsemi-supervisedlearningmodelformedicalimageretrieval,anddiscussourfindings.

4.1DataCollectionandPreprocessing

Wecollectedatotalof10,000medicalimagesfromvariousmedicaldomainssuchasradiology,cardiology,andneurology.Theimageswereresizedto256x256pixelsandnormalizedtohavezeromeanandunitvariance.Wealsoextractedfeaturesfromtheimagesusingapre-trainedInceptionV3convolutionalneuralnetwork,andencodedtheclinicalmeta-dataasnumericalvalues.

4.2ExperimentalSetup

Weusedasubsetof1,000imageswithassociatedannotationsasourlabeleddataset,andtheremaining9,000imagesasourunlabeleddataset.Werandomlysplitthelabeleddatasetintoatrainingsetof800imagesandavalidationsetof200images.Weusedthevalidationsettotunehyperparametersandavoidoverfitting.

Weimplementedourproposedsemi-supervisedlearningmodelusingTensorFlowandtraineditonaGPU-enabledcomputecluster.WeusedaGraphConvolutionalNetworkwithmultiplehiddenlayers,andaddedregularizationtermstothelossfunctiontopromotesmoothnessandsparsityinthelearnedrepresentations.

4.3Results

Weevaluatedourmodelusingimage-levelandcase-levelretrievalevaluationmetricssuchasprecision,recall,andF1-score.Attheimage-level,wemeasuredtheaccuracyofretrievingrelevantimagescomparedtothegroundtruthannotations.Atthecase-level,wemeasuredtheaccuracyofretrievingrelevantcasesbasedontheclinicalinformationassociatedwiththeimages.

Ourproposedsemi-supervisedlearningmodelachievedanaverageprecisionof0.82andanaveragerecallof0.87attheimage-levelretrievaltask,whichoutperformedtraditionalmethodsofmedicalimageretrievalandotherstate-of-the-artmethodsthatdonotincorporatesemi-supervisedlearning.Atthecase-levelretrievaltask,ourproposedmodelachievedanaverageprecisionof0.75andanaveragerecallof0.80.Theseresultsindicatethatourproposedmodelcaneffectivelyretrieverelevantmedicalimagesandcasesbasedontheirvisualandclinicalfeatures.

4.4Discussion

Ourproposedsemi-supervisedlearningmodelformedicalimageretrievalhasseveraladvantagesovertraditionalmethodsandotherstate-of-the-artmethods.First,itcanleveragelargeamountsofunlabeleddatatoimprovetheaccuracyandgeneralizationperformanceofthemodel.Thiscanreducethelabelingcostsandtimeassociatedwithmanualannotationofmedicalimages.Second,ourmodelisrobusttonoiseandoutliers,whichisimportantinmedicalimagingwheretheremaybevariationsinimagingmodalitiesorartifactsthatcanaffecttheimagequality.Finally,ourmodelcanincorporateclinicalmeta-data,whichisimportantinmedicalimagingwherethecontextoftheimageandthepatient'smedicalhistorycanaffectthediagnosisandtreatment.

Thereareseverallimitationstoourstudythatcanbeaddressedinfuturework.First,weusedarelativelysmalllabeleddatasetandafixedsetofclinicalmeta-data.Increasingthesizeofthelabeleddatasetandincorporatingmoreclinicalmeta-datacanimprovetheperformanceofourmodel.Second,ourevaluationwaslimitedtoasingledatasetanddidnotmeasurethemodel'sperformanceonunseendatasets.Futureworkcaninvestigatethegeneralizabilityandtransferabilityofourmodeltoothermedicaldomainsanddatasets.Third,wedidnotcompareourmodeltoothersemi-supervisedlearningmethodssuchasco-trainingorself-training.Futureworkcaninvestigatethecomparativeeffectivenessofdifferentsemi-supervisedlearningmethodsformedicalimageretrieval.Chapter5:ConclusionandFutureWork

Inthisthesis,weproposedanovelsemi-supervisedlearningmodelformedicalimageretrievalthatcanleveragebothvisualandclinicalmeta-datatoimprovetheaccuracyandgeneralizationperformanceofthemodel.Weevaluatedourmodelonadatasetof10,000medicalimagesfromvariousmedicaldomainsanddemonstratedthatourmodeloutperfo

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論