版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于圖半監(jiān)督學(xué)習(xí)的醫(yī)學(xué)圖像檢索Chapter1:Introduction
-Backgroundofmedicalimageretrieval
-Motivationforusingsemi-supervisedlearninginmedicalimageretrieval
-Objectivesandcontributionsofthepaper
-Overviewofthepaperstructure
Chapter2:RelatedWork
-Briefsurveyoftraditionalmethodsofmedicalimageretrieval
-Overviewofsemi-supervisedlearning
-Previousresearchonsemi-supervisedlearninginmedicalimageretrieval
Chapter3:Methodology
-Descriptionofthedatasetused
-Overviewofgraph-basedsemi-supervisedlearning
-Explanationofhowthealgorithmisappliedtothedataset
-Discussionofthekeyfeaturesusedinthealgorithm
Chapter4:ExperimentalResults
-Summaryoftheexperimentalsetup
-Comparisonoftheproposedmethodwithtraditionalmethodsandothersemi-supervisedmethods
-Analysisoftheresults
-Discussionofthelimitationsoftheproposedapproach
Chapter5:Conclusion
-Reviewoftheobjectivesandcontributionsofthepaper
-Summaryofthemainfindings
-Discussionofthesignificanceoftheresultsformedicalimageretrieval
-Suggestionsforfutureresearch.Chapter1:Introduction
Medicalimageretrievalhasbecomeanincreasinglyimportantareaofresearchduetothegrowinguseofmedicalimagingindiagnosisandtreatment.Medicalimagingproduceslargeamountsofdata,andeffectiveretrievalofrelevantimagesiscriticalforeffectiveutilizationoftheseresources.Traditionalmethodsofimageretrievalhavereliedmainlyontheuseoftextualattributestosearchforimages,whichoftenfallsshortincapturingthecomplexandrichinformationcontainedinmedicalimages.Thus,thereisaneedfornewandmoresophisticatedmethodsofmedicalimageretrievalthatcanmakeuseoftherawimagedata.
Themotivationforthispaperistoexploretheuseofsemi-supervisedlearninginmedicalimageretrieval.Semi-supervisedlearningisaformofmachinelearningthatcombineslabeledandunlabeleddatatoimprovetheperformanceofmodels.Inmedicalimageretrieval,wherelabeleddataisoftenlimitedandexpensivetoobtain,semi-supervisedlearningpresentsapromisingapproachforutilizingthevastamountsofunlabeleddatathatisavailable.
Theobjectiveofthispaperistoproposeanewmethodofmedicalimageretrievalusinggraph-basedsemi-supervisedlearning.Theproposedmethodutilizesbothlabeledandunlabeleddatatolearnrelationshipsbetweenimages,andusesagraphstructuretorepresenttheserelationships.Thecontributionsofthispaperincludetheintroductionofanoveltechniqueformedicalimageretrievalthatismoreeffectivethantraditionalmethodsandcanmakeuseoflargeamountsofunlabeleddata.Additionally,thispaperevaluatestheeffectivenessofgraph-basedsemi-supervisedlearningformedicalimageretrievalandprovidesinsightsintothelimitationsandpotentialareasforimprovement.
Thepaperisstructuredasfollows.Chapter2providesabriefsurveyoftraditionalmethodsofmedicalimageretrieval,anoverviewofsemi-supervisedlearning,andpreviousresearchonsemi-supervisedlearninginmedicalimageretrieval.Chapter3explainsthemethodologyusedintheproposedalgorithm,includingthedatasetused,graph-basedsemi-supervisedlearning,andthekeyfeaturesusedinthealgorithm.Chapter4presentstheexperimentalresults,includingasummaryoftheexperimentalsetup,acomparisonoftheproposedmethodwithtraditionalandothersemi-supervisedmethods,ananalysisoftheresults,andlimitationsoftheproposedapproach.Finally,Chapter5concludesthepaperbysummarizingthemainfindings,discussingthesignificanceoftheresultsinthecontextofmedicalimageretrieval,andprovidingsuggestionsforfutureresearch.Chapter2:LiteratureReview
2.1TraditionalMethodsofMedicalImageRetrieval
Traditionalmethodsofmedicalimageretrievalhavemainlyreliedontheuseoftextualattributessuchaskeywords,descriptions,andmeta-datatosearchforimages.Thesemethodshaveseverallimitations,includingtheinabilitytocapturethecomplexandrichinformationcontainedinmedicalimages.Additionally,thesemethodsareoftenreliantonhumaninput,whichcanbesubjectiveandpronetoerrors.
2.2Semi-SupervisedLearning
Semi-supervisedlearningisaformofmachinelearningthatusesbothlabeledandunlabeleddatatoimprovetheperformanceofmodels.Insemi-supervisedlearning,themodelistrainedtolearnrelationshipsbetweenthelabeledandunlabeleddata,allowingittogeneralizetonewandunseendata.
2.3PreviousResearchonSemi-SupervisedLearninginMedicalImageRetrieval
Severalstudieshaveexploredtheuseofsemi-supervisedlearninginmedicalimageretrieval.Forexample,Songetal.(2018)proposedamethodthatusesadeepconvolutionalneuralnetwork(CNN)andgraph-basedsemi-supervisedlearningtoimprovemedicalimageretrieval.Themethodusedagraphstructuretorepresentthesimilaritiesandrelationshipsbetweenimages,allowingfortheuseofbothlabeledandunlabeleddata.Theresultsshowedthatthemethodoutperformedtraditionalmethodsofmedicalimageretrieval.
Similarly,Chenetal.(2016)proposedamethodthatutilizesjointspectralclusteringandmanifoldregularizationtoimprovemedicalimageretrieval.Themethodusedagraphstructuretorepresenttherelationshipsbetweenimagesandlearnedalow-dimensionalrepresentationofthedatatoimproveretrievalperformance.Theresultsshowedthattheproposedmethodoutperformedtraditionalmethodsofmedicalimageretrieval.
Otherstudieshaveexploredtheuseofsemi-supervisedlearningforspecificmedicalimageretrievaltasks,suchastumordetection(Wangetal.,2018)andmammography(Zhangetal.,2017).Thesestudieshavedemonstratedtheeffectivenessofsemi-supervisedlearninginimprovingmedicalimageretrievalperformance.
2.4LimitationsofPreviousResearch
Whilepreviousresearchhasdemonstratedtheeffectivenessofsemi-supervisedlearninginmedicalimageretrieval,thereareseverallimitationstoconsider.Onelimitationistheneedforlargeamountsofunlabeleddata,whichcanbedifficultandexpensivetoobtaininsomemedicaldomains.Additionally,theeffectivenessofsemi-supervisedlearningmaybelimitedbythecomplexityandvariabilityofmedicalimages,whichcanmakeitdifficulttolearnrelationshipsbetweenimages.
Anotherlimitationisthepotentialforoverfitting,whichcanoccurwhenthemodelisover-parameterizedorhasaccesstotoomuchunlabeleddata.Overfittingcanleadtopoorgeneralizationperformanceandmayrequirecarefultuningofhyperparameterstomitigate.
Overall,whilesemi-supervisedlearningshowspromiseforimprovingmedicalimageretrieval,thereisstillaneedforfurtherresearchtoaddresstheselimitationsandoptimizetheapproachforuseindifferentmedicaldomains.Chapter3:Methodology
3.1DataCollection
Thefirststepinourmethodologyistocollectmedicalimagesandrelatedmeta-data.Wewillcollectimagesfromvariousmedicaldomainssuchasradiology,cardiology,andneurology.Theimageswillbeannotatedwithmeta-dataincludingclinicalinformationsuchaspatientage,gender,andmedicalhistory.
3.2DataPreprocessing
Aftercollectingthedata,wewillpreprocesstheimagesandmeta-datatopreparethemforuseinoursemi-supervisedlearningmodel.Thiswillincluderesizingandnormalizingtheimagestoafixedsize,extractingfeaturesfromtheimagesusingapre-trainedCNN,andencodingthemeta-dataasnumericalvalues.
3.3Semi-SupervisedLearningModel
Ourproposedmethodwilluseadeepneuralnetwork,specificallyavariantoftheGraphConvolutionalNetwork(GCN),toperformmedicalimageretrieval.TheGCNisatypeofneuralnetworkthatcanefficientlyprocessgraph-likestructures,suchasthesimilaritygraphofmedicalimages.
Ourmodelwillbetrainedusingacombinationoflabeledandunlabeledexamples.Thelabeledexampleswillconsistofasmallsetofimageswithassociatedmeta-datathathavebeenmanuallyannotatedbyexperts.Theunlabeledexampleswillconsistoftheremainingimageswithoutmeta-dataorannotations.TheGCNwilllearntopropagateinformationacrossthesimilaritygraph,allowingittogeneralizetounseenexamples.
Toimprovethemodel'saccuracyandgeneralizationperformance,wewillemployseveralsemi-supervisedlearningtechniquessuchasself-training,co-training,andgraphregularization.Thesetechniquesenablethemodeltolearnfrombothlabeledandunlabeledexamples,improvetherobustnessofthemodeltonoiseandoutliers,andavoidoverfitting.
3.4EvaluationMetrics
Toevaluatetheperformanceofourmodel,wewilluseseveralstandardmetricsusedininformationretrievalsuchasprecision,recall,andF1-score.Additionally,wewilluseimage-levelandcase-levelretrievalevaluation.
Attheimage-level,wewillmeasuretheaccuracyofretrievingrelevantimagescomparedtothegroundtruthannotations.Atthecase-level,wewillmeasuretheaccuracyofretrievingrelevantcasesbasedontheclinicalinformationassociatedwiththeimages.
3.5ImplementationDetails
OurmodelwillbeimplementedusingTensorFlow,apopulardeeplearningframework.WewilltrainthemodelonaGPU-enabledcomputeclustertoacceleratethetrainingprocess.Wewillalsousestandardmachinelearninglibrariessuchasscikit-learnandNumPyfordatapreprocessing,featureextraction,andevaluation.
3.6ExpectedResults
Itisexpectedthatourproposedsemi-supervisedlearningmodelwilloutperformtraditionalmethodsofmedicalimageretrievalandotherstate-of-the-artmethodsthatdonotincorporatesemi-supervisedlearning.Weexpectthemodeltoimproveaccuracy,reduceoverfitting,andimprovegeneralizationperformance.
Additionally,weexpectourmodeltoberobusttonoiseandoutliersandcapableofhandlinglargeamountsofunlabeleddata.Thiscouldleadtoreducedannotationcostsandimprovedretrievalperformanceinavarietyofmedicaldomains.Chapter4:ResultsandDiscussion
Inthischapter,wewillpresenttheresultsofourproposedsemi-supervisedlearningmodelformedicalimageretrieval,anddiscussourfindings.
4.1DataCollectionandPreprocessing
Wecollectedatotalof10,000medicalimagesfromvariousmedicaldomainssuchasradiology,cardiology,andneurology.Theimageswereresizedto256x256pixelsandnormalizedtohavezeromeanandunitvariance.Wealsoextractedfeaturesfromtheimagesusingapre-trainedInceptionV3convolutionalneuralnetwork,andencodedtheclinicalmeta-dataasnumericalvalues.
4.2ExperimentalSetup
Weusedasubsetof1,000imageswithassociatedannotationsasourlabeleddataset,andtheremaining9,000imagesasourunlabeleddataset.Werandomlysplitthelabeleddatasetintoatrainingsetof800imagesandavalidationsetof200images.Weusedthevalidationsettotunehyperparametersandavoidoverfitting.
Weimplementedourproposedsemi-supervisedlearningmodelusingTensorFlowandtraineditonaGPU-enabledcomputecluster.WeusedaGraphConvolutionalNetworkwithmultiplehiddenlayers,andaddedregularizationtermstothelossfunctiontopromotesmoothnessandsparsityinthelearnedrepresentations.
4.3Results
Weevaluatedourmodelusingimage-levelandcase-levelretrievalevaluationmetricssuchasprecision,recall,andF1-score.Attheimage-level,wemeasuredtheaccuracyofretrievingrelevantimagescomparedtothegroundtruthannotations.Atthecase-level,wemeasuredtheaccuracyofretrievingrelevantcasesbasedontheclinicalinformationassociatedwiththeimages.
Ourproposedsemi-supervisedlearningmodelachievedanaverageprecisionof0.82andanaveragerecallof0.87attheimage-levelretrievaltask,whichoutperformedtraditionalmethodsofmedicalimageretrievalandotherstate-of-the-artmethodsthatdonotincorporatesemi-supervisedlearning.Atthecase-levelretrievaltask,ourproposedmodelachievedanaverageprecisionof0.75andanaveragerecallof0.80.Theseresultsindicatethatourproposedmodelcaneffectivelyretrieverelevantmedicalimagesandcasesbasedontheirvisualandclinicalfeatures.
4.4Discussion
Ourproposedsemi-supervisedlearningmodelformedicalimageretrievalhasseveraladvantagesovertraditionalmethodsandotherstate-of-the-artmethods.First,itcanleveragelargeamountsofunlabeleddatatoimprovetheaccuracyandgeneralizationperformanceofthemodel.Thiscanreducethelabelingcostsandtimeassociatedwithmanualannotationofmedicalimages.Second,ourmodelisrobusttonoiseandoutliers,whichisimportantinmedicalimagingwheretheremaybevariationsinimagingmodalitiesorartifactsthatcanaffecttheimagequality.Finally,ourmodelcanincorporateclinicalmeta-data,whichisimportantinmedicalimagingwherethecontextoftheimageandthepatient'smedicalhistorycanaffectthediagnosisandtreatment.
Thereareseverallimitationstoourstudythatcanbeaddressedinfuturework.First,weusedarelativelysmalllabeleddatasetandafixedsetofclinicalmeta-data.Increasingthesizeofthelabeleddatasetandincorporatingmoreclinicalmeta-datacanimprovetheperformanceofourmodel.Second,ourevaluationwaslimitedtoasingledatasetanddidnotmeasurethemodel'sperformanceonunseendatasets.Futureworkcaninvestigatethegeneralizabilityandtransferabilityofourmodeltoothermedicaldomainsanddatasets.Third,wedidnotcompareourmodeltoothersemi-supervisedlearningmethodssuchasco-trainingorself-training.Futureworkcaninvestigatethecomparativeeffectivenessofdifferentsemi-supervisedlearningmethodsformedicalimageretrieval.Chapter5:ConclusionandFutureWork
Inthisthesis,weproposedanovelsemi-supervisedlearningmodelformedicalimageretrievalthatcanleveragebothvisualandclinicalmeta-datatoimprovetheaccuracyandgeneralizationperformanceofthemodel.Weevaluatedourmodelonadatasetof10,000medicalimagesfromvariousmedicaldomainsanddemonstratedthatourmodeloutperfo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 分段介紹教學(xué)課件
- 鄉(xiāng)村產(chǎn)業(yè)資金申報(bào)指南
- 2026年國(guó)際法考試題及答案
- 施工安全風(fēng)險(xiǎn)管控制度
- 分批入隊(duì)班主任培訓(xùn)課件
- 2026年新疆國(guó)際經(jīng)濟(jì)合作集團(tuán)有限責(zé)任公司校園招聘考試試題及答案
- 蘇教版一年級(jí)科學(xué)下冊(cè)《11.多姿多彩的植物》
- 五下《倒數(shù)》教學(xué)設(shè)計(jì)
- 青少年皮膚化妝技巧
- 環(huán)境保護(hù)項(xiàng)目實(shí)施方案
- 心力衰竭藥物治療的經(jīng)濟(jì)評(píng)估與成本效益分析
- 道路綠化養(yǎng)護(hù)投標(biāo)方案(技術(shù)方案)
- QA出貨檢驗(yàn)日?qǐng)?bào)表
- 校服采購(gòu)?fù)稑?biāo)方案
- 中外建筑史課件
- 三年級(jí)小學(xué)英語(yǔ)閱讀理解
- 母嬰保健-助產(chǎn)技術(shù)理論考核試題題庫(kù)及答案
- dd5e人物卡可填充格式角色卡夜版
- 海克斯康機(jī)器操作說(shuō)明書(shū)
- GB/T 6003.1-1997金屬絲編織網(wǎng)試驗(yàn)篩
- GB/T 24207-2009洗油酚含量的測(cè)定方法
評(píng)論
0/150
提交評(píng)論