中考數(shù)學(xué)二輪綜合復(fù)習(xí)4:開(kāi)放與探索性問(wèn)題 復(fù)習(xí)講義 (含答案)_第1頁(yè)
中考數(shù)學(xué)二輪綜合復(fù)習(xí)4:開(kāi)放與探索性問(wèn)題 復(fù)習(xí)講義 (含答案)_第2頁(yè)
中考數(shù)學(xué)二輪綜合復(fù)習(xí)4:開(kāi)放與探索性問(wèn)題 復(fù)習(xí)講義 (含答案)_第3頁(yè)
中考數(shù)學(xué)二輪綜合復(fù)習(xí)4:開(kāi)放與探索性問(wèn)題 復(fù)習(xí)講義 (含答案)_第4頁(yè)
中考數(shù)學(xué)二輪綜合復(fù)習(xí)4:開(kāi)放與探索性問(wèn)題 復(fù)習(xí)講義 (含答案)_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE綜合復(fù)習(xí)四.開(kāi)放與探索性問(wèn)題&.綜合評(píng)述:開(kāi)放與探索性問(wèn)題改變了過(guò)去試題形式單一,知識(shí)點(diǎn)考查僵硬,不能充分調(diào)動(dòng)學(xué)生的創(chuàng)新意識(shí)和探究興趣的缺點(diǎn),為學(xué)生提供了更廣闊的思維空間,正因?yàn)槿绱?,開(kāi)放與探究性題成為近幾年中考的熱點(diǎn)題型之一。一、開(kāi)放性問(wèn)題這類題一般沒(méi)有具體的標(biāo)準(zhǔn)答案,解題時(shí)要靈活運(yùn)用所學(xué)基礎(chǔ)知識(shí),多層次、多角度地思考問(wèn)題,解決問(wèn)題,一般答案只要符合題意即可。二、探究性問(wèn)題探究性問(wèn)題是指命題中缺少一定的條件或無(wú)明確的結(jié)論,需要經(jīng)過(guò)推斷、補(bǔ)充并加以證明的題型,探究性問(wèn)題一般分為三類:1、條件探索型題;2、結(jié)論探究型題;3、探究存在型題。條件型題是指所給問(wèn)題中結(jié)論明確,需要完備條件的題目;結(jié)論探究型題是指題目中的結(jié)論不確定,不唯一,或題目結(jié)論需要類比,引申推廣,或題目給出特例,要通過(guò)歸納總結(jié)出一般結(jié)論。探究存在型題是指在一定的基礎(chǔ)上,需探究發(fā)現(xiàn)某種數(shù)學(xué)關(guān)系是否存在的題目。這類問(wèn)題具有較強(qiáng)的綜合性,涉及的數(shù)學(xué)基礎(chǔ)知識(shí)非常廣泛。這種題型既能考查學(xué)生對(duì)基礎(chǔ)知識(shí)掌握的熟練程度,又能較好的考查學(xué)生的觀察、分析、概括能力,因此復(fù)習(xí)時(shí),既要重視基礎(chǔ)知識(shí),又要強(qiáng)化數(shù)學(xué)思想方法訓(xùn)練,切實(shí)提高自己分析問(wèn)題、解決問(wèn)題的能力。&.典型例題剖析:§.例1、多項(xiàng)式SKIPIF1<0加上一個(gè)單項(xiàng)式后,使它成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是.(填上一個(gè)你認(rèn)為正確的即可)思路點(diǎn)撥:本題主要考查了完全平方式。解:按完全平方公式得SKIPIF1<0,SKIPIF1<0,另外SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故其答案是SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.規(guī)律總結(jié):本題屬于條件探索題,可以從完全平方式入手,多層次、多角度思考問(wèn)題,可繁可簡(jiǎn),可難可易,一般答案只要符合題意即可。常見(jiàn)錯(cuò)誤:(1)錯(cuò)以為只有SKIPIF1<0是完全平方式,其實(shí)SKIPIF1<0也是完全平方式;(2)完全平方式SKIPIF1<0中容易忽略中間項(xiàng)系數(shù)SKIPIF1<0.§.例2、(2019年荊門(mén))多項(xiàng)式SKIPIF1<0可以分解成兩個(gè)一次因式的積,整數(shù)SKIPIF1<0的值是.(寫(xiě)出一個(gè)即可)思路點(diǎn)撥:若讓考生分解SKIPIF1<0,則考生易得SKIPIF1<0,考查面單一;若將SKIPIF1<0代替SKIPIF1<0,同時(shí)給定SKIPIF1<0在整數(shù)范圍內(nèi)可因式分解的條件且要求探索SKIPIF1<0的值,此時(shí)SKIPIF1<0的值具有開(kāi)放性.解答時(shí),應(yīng)根據(jù)根與系數(shù)的關(guān)系定理,先將SKIPIF1<0分解SKIPIF1<0SKIPIF1<0,然后可得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,或SKIPIF1<0.答案:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.規(guī)律總結(jié):解答此類條件開(kāi)放題,關(guān)鍵是選準(zhǔn)突破口,比如本題中根與系數(shù)的關(guān)系是突破口。常見(jiàn)錯(cuò)誤:因選不準(zhǔn)突破口而導(dǎo)致亂解、錯(cuò)解。§.例3、如圖SKIPIF1<0,SKIPIF1<0為⊙SKIPIF1<0的直徑,SKIPIF1<0是⊙SKIPIF1<0的切線,切點(diǎn)為SKIPIF1<0,SKIPIF1<0為⊙SKIPIF1<0的割線,SKIPIF1<0的平分線交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,要使SKIPIF1<0,則SKIPIF1<0應(yīng)滿足的條件是.(只需填一個(gè)即可)思路點(diǎn)撥:本題考查圓的性質(zhì)及等腰三角形的判定。解:方法一:根據(jù)等腰三角形“三線合一”的性質(zhì),只要SKIPIF1<0,就可以得到SKIPIF1<0;圖1圖1FPBCDAEOSKIPIF1<0,SKIPIF1<0,SKIPIF1<0只需SKIPIF1<0平分SKIPIF1<0就可以得到SKIPIF1<0.具體答案為:SKIPIF1<0(或SKIPIF1<0平分SKIPIF1<0)規(guī)律總結(jié):對(duì)于答案不唯一的題目,其解法有選擇性,可擇簡(jiǎn)而解之。常見(jiàn)錯(cuò)誤:忽略題目中限制條件而導(dǎo)致出錯(cuò),如填成SKIPIF1<0.圖2ABFEDC§.例4、如圖SKIPIF1<0,在□SKIPIF1<0中,點(diǎn)SKIPIF1<0、SKIPIF1<0在對(duì)角線SKIPIF1<0上,且SKIPIF1<0.請(qǐng)你以SKIPIF1<0為一個(gè)端點(diǎn)和圖中已標(biāo)明字母的某一點(diǎn)連成一條新線段,猜想并證明它和圖中已有的某一條線段相等(只需證明一組線段相等即可).圖2ABFEDC(1)連結(jié);(2)猜想:SKIPIF1<0;(3)證明:;思路點(diǎn)撥:本題立足于一個(gè)常見(jiàn)的基本圖形,把傳統(tǒng)證明題改造成一個(gè)要求學(xué)生發(fā)現(xiàn)、猜想、證明的幾何題,考查學(xué)生的發(fā)散思維能力。具體解法為:解法一:(1)連結(jié)SKIPIF1<0;(2)猜想:SKIPIF1<0;O圖3ABFEDC(3)證法一:∵四邊形O圖3ABFEDC∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0證法二:如圖SKIPIF1<0,連結(jié)SKIPIF1<0、SKIPIF1<0,設(shè)SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0.∵四邊形SKIPIF1<0是平行四邊形∴SKIPIF1<0,SKIPIF1<0又∵SKIPIF1<0∵SKIPIF1<0,即SKIPIF1<0∴四邊形SKIPIF1<0是平行四邊形∴SKIPIF1<0解法二:(1)連結(jié)SKIPIF1<0;(2)猜想:SKIPIF1<0;(3)證明過(guò)程略.規(guī)律總結(jié):此類題目連結(jié)、猜想、證明是一體的,注意各個(gè)環(huán)節(jié)的具體要求。常見(jiàn)錯(cuò)誤:只注意問(wèn)題的開(kāi)放性,忽視問(wèn)題的限制性條件而導(dǎo)致出錯(cuò)?!?例5、已知,如圖SKIPIF1<0,SKIPIF1<0是⊙SKIPIF1<0的直徑,SKIPIF1<0是⊙SKIPIF1<0上一點(diǎn),連結(jié)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作直線SKIPIF1<0于點(diǎn)SKIPIF1<0(SKIPIF1<0),點(diǎn)SKIPIF1<0是SKIPIF1<0上任意一點(diǎn)(點(diǎn)SKIPIF1<0、SKIPIF1<0除外),直線SKIPIF1<0交⊙SKIPIF1<0于點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0是SKIPIF1<0(點(diǎn)SKIPIF1<0除外)上任意一點(diǎn),上述結(jié)論是否仍然成立?若成立,請(qǐng)畫(huà)出圖形并給予證明;若不成立,請(qǐng)說(shuō)明理由。圖圖4-1ABDECGHFEDOABCFGOABCD(E)OF(G)圖4-2圖4-3思路點(diǎn)撥:(1)欲證SKIPIF1<0,可證SKIPIF1<0,進(jìn)而可證SKIPIF1<0∽SKIPIF1<0;(2)當(dāng)點(diǎn)SKIPIF1<0是SKIPIF1<0(點(diǎn)SKIPIF1<0除外)上任意一點(diǎn)時(shí),上述結(jié)論仍成立。①如圖SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0是SKIPIF1<0(點(diǎn)SKIPIF1<0除外)上任意一點(diǎn)(不包括點(diǎn)SKIPIF1<0)時(shí),連結(jié)SKIPIF1<0,SKIPIF1<0∽SKIPIF1<0,便有SKIPIF1<0,即SKIPIF1<0;②如圖SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合時(shí),SKIPIF1<0與點(diǎn)SKIPIF1<0重合,可得SKIPIF1<0,故結(jié)論仍然成立。具體解法為:解:(1)證明:延長(zhǎng)SKIPIF1<0交⊙SKIPIF1<0于SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0∴SKIPIF1<0∽SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0(2)當(dāng)點(diǎn)SKIPIF1<0是SKIPIF1<0(點(diǎn)SKIPIF1<0除外)上任意一點(diǎn)時(shí),上述結(jié)論仍成立.①如圖SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0是SKIPIF1<0(點(diǎn)SKIPIF1<0除外)上任意一點(diǎn)(不包括點(diǎn)SKIPIF1<0)時(shí),連結(jié)SKIPIF1<0,∵SKIPIF1<0∽SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∽SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0②如圖SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合時(shí),SKIPIF1<0與點(diǎn)SKIPIF1<0重合,有SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0故結(jié)論仍然成立.具體解法為:規(guī)律總結(jié):這類題屬于結(jié)論探究題,結(jié)論到底如何,需要探究一番才見(jiàn)分曉,探索時(shí)注意分清各種特殊情況。常見(jiàn)錯(cuò)誤:忽略點(diǎn)點(diǎn)SKIPIF1<0是SKIPIF1<0(點(diǎn)SKIPIF1<0除外)上任意一點(diǎn),針對(duì)特殊情況定論,會(huì)出現(xiàn)偏差?!?例6、(2019年蘭州)如圖SKIPIF1<0,已知SKIPIF1<0是⊙SKIPIF1<0的直徑,⊙SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作⊙SKIPIF1<0的切線SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,且SKIPIF1<0,由上述條件,你能推出的正確結(jié)論有:(要求:不再標(biāo)注其他字母,找結(jié)論的過(guò)程中所連輔助線不能出現(xiàn)在結(jié)果中,不寫(xiě)推理過(guò)程,至少寫(xiě)出SKIPIF1<0個(gè)結(jié)論,結(jié)論不能類同)。圖5ABECD圖5ABECDO解:(1)從三角形看:SKIPIF1<0,SKIPIF1<0∽SKIPIF1<0∽SKIPIF1<0,SKIPIF1<0∽SKIPIF1<0∽SKIPIF1<0(2)從角看:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0(3)從邊看:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.從中任選出SKIPIF1<0個(gè)或SKIPIF1<0個(gè)以上的結(jié)論即可.規(guī)律總結(jié):這類開(kāi)放題,由于結(jié)論比較多,比較雜,注意分類探求,另外對(duì)于結(jié)論的得出不論難易,只要符合要求即可,因此難易程度上具有選擇性。常見(jiàn)錯(cuò)誤:忽略開(kāi)放題要求而出錯(cuò),比如本題寫(xiě)出SKIPIF1<0個(gè)結(jié)論,缺至少SKIPIF1<0個(gè)結(jié)論?!?例7、在一個(gè)服裝廠里有有大量形狀為等腰直角三角形的邊角布料(如圖SKIPIF1<0)。現(xiàn)找出其中的一種,測(cè)得SKIPIF1<0,SKIPIF1<0,今要從這種三角形布料中剪出一種扇形,做成不同形狀的玩具,使扇形的邊緣半徑恰好在SKIPIF1<0的邊上,且扇形的弧與SKIPIF1<0的其他邊相切,請(qǐng)?jiān)O(shè)計(jì)出所有符合題意的方案示意圖,并求出扇形的半徑(只要求畫(huà)出圖形,并直接寫(xiě)出扇形半徑)。思路點(diǎn)撥:題目要求用畫(huà)示意圖的方式作答,解答的關(guān)鍵是確定扇形的圓心,可從圓心在SKIPIF1<0的三個(gè)頂點(diǎn)上和圓心在SKIPIF1<0的三邊上的兩個(gè)角度來(lái)考慮。解:如圖SKIPIF1<0:圖圖6圖7規(guī)律總結(jié):本題是一道方案設(shè)計(jì)題,也是一道策略開(kāi)放題,解答這類問(wèn)題,注意審清設(shè)計(jì)方案的要求,找準(zhǔn)突破口。常見(jiàn)錯(cuò)誤:(1)忽略扇形要求出錯(cuò);(2)忘記標(biāo)出扇形半徑;(3)方案設(shè)計(jì)不全?!?例8、(2019年溫州市)小明家用瓷磚裝修衛(wèi)生間,還有一塊墻角面未完工(如圖甲所示),他想在現(xiàn)有的六塊瓷磚余料中(如圖乙所示)挑選2塊或3塊余料進(jìn)行鋪設(shè),請(qǐng)你幫小明設(shè)計(jì)兩種不同的鋪設(shè)方案(在下面圖丙、圖丁中畫(huà)出鋪設(shè)示意圖,并標(biāo)出所選用每塊余料的編號(hào))。圖圖甲圖乙解析:這是一道策略開(kāi)放的方案設(shè)計(jì)題,考查圖形的分割與組合能力,注意從原圖形中的邊角入手分割與組合。解答:列舉以下四種鋪設(shè)的示意圖供參考。評(píng)講:解答這類題其關(guān)鍵是抓住原圖的邊角特征進(jìn)行合理分割與組合,同時(shí)注意與密鋪知識(shí)聯(lián)系起來(lái)?!?例9、(2019年河南)觀察下表,填表后再解答問(wèn)題:(1)完成下列表格序號(hào)123…圖形…●的個(gè)數(shù)824…★的個(gè)數(shù)14…(2)試求第幾個(gè)圖形中“●”的個(gè)數(shù)和“★”的個(gè)數(shù)相等?思路點(diǎn)撥:本題屬于規(guī)律探究題.仔細(xì)觀察圖形,會(huì)發(fā)現(xiàn):圖SKIPIF1<0中含“●”SKIPIF1<0個(gè),“★”SKIPIF1<0個(gè);圖SKIPIF1<0中含“●”SKIPIF1<0個(gè),“★”SKIPIF1<0個(gè);圖SKIPIF1<0中含“●”SKIPIF1<0個(gè),“★”SKIPIF1<0個(gè),由此我們可以大膽預(yù)測(cè)圖SKIPIF1<0中含“●”SKIPIF1<0個(gè),“★”SKIPIF1<0個(gè)。解:(1)SKIPIF1<0,SKIPIF1<0;(2)由(1)可知圖SKIPIF1<0中含“●”SKIPIF1<0個(gè),“★”SKIPIF1<0個(gè),根據(jù)題意得:SKIPIF1<0解得:SKIPIF1<0(舍去),SKIPIF1<0故第SKIPIF1<0個(gè)圖形中“●”的個(gè)數(shù)和“★”的個(gè)數(shù)相等。規(guī)律總結(jié):解規(guī)律探究題要求考生用歸納法從具體、特殊事實(shí)中探究其存在的規(guī)律,把潛藏在表面現(xiàn)象中的一般規(guī)律挖掘出來(lái),如果特殊事例不夠,還可以自行再列出。常見(jiàn)錯(cuò)誤:(1)因找不準(zhǔn)一般規(guī)律出現(xiàn)誤解;(2)忽略SKIPIF1<0的實(shí)際意義而出錯(cuò),如第(2)題中第SKIPIF1<0個(gè)圖形?!?例10、(2019年南平)在某次數(shù)學(xué)變換游戲中,我們把整數(shù)0,1,2,……,100稱為“舊數(shù)”,游戲的變換規(guī)則是:將舊數(shù)先平方,再除以SKIPIF1<0,所得的數(shù)稱為“新數(shù)”。(1)請(qǐng)把舊數(shù)SKIPIF1<0和SKIPIF1<0按上述規(guī)則變換成新數(shù);(2)經(jīng)過(guò)上述規(guī)則變換后,我們發(fā)現(xiàn)許多舊數(shù)變小了,有人斷言:“按照上述規(guī)則,所有的新數(shù)都不等于它的舊數(shù).”你認(rèn)為這種說(shuō)法對(duì)嗎?若不對(duì),請(qǐng)求出所有不符合這一說(shuō)法的舊數(shù);(3)請(qǐng)求出按上述規(guī)則變換后減小了最多的舊數(shù)(寫(xiě)出解答過(guò)程)。思路點(diǎn)撥:本題屬于趣味性探索題,增強(qiáng)了中考試題的娛樂(lè)性、趣味性及新穎性。解:(1)SKIPIF1<0,SKIPIF1<0;(2)不對(duì)。設(shè)這個(gè)數(shù)為SKIPIF1<0個(gè),則SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0即不符合說(shuō)法的舊數(shù)有SKIPIF1<0和SKIPIF1<0.(3)設(shè)減小的量為SKIPIF1<0,則SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值,且最大值為SKIPIF1<0,即變換后減小最多的舊數(shù)為SKIPIF1<0.規(guī)律總結(jié):解答趣味探索題關(guān)鍵是理解其游戲規(guī)則。常見(jiàn)錯(cuò)誤:(1)找不準(zhǔn)游戲規(guī)則的實(shí)質(zhì)出錯(cuò);(2)以特殊問(wèn)題得一般結(jié)論出錯(cuò)?!?例11、如圖SKIPIF1<0,已知二次函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0、點(diǎn)SKIPIF1<0(點(diǎn)SKIPIF1<0在SKIPIF1<0軸的正半軸上),與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,其頂點(diǎn)為SKIPIF1<0,直線SKIPIF1<0的函數(shù)關(guān)系式為SKIPIF1<0,又SKIPIF1<0.(1)求SKIPIF1<0、SKIPIF1<0的值;(2)探究:在該二次函數(shù)的圖象上是否存在點(diǎn)SKIPIF1<0(點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0、SKIPIF1<0不重合),使得SKIPIF1<0是以SKIPIF1<0為一條直角邊的直角三角形?若存在,求出點(diǎn)SKIPIF1<0的坐標(biāo),若不存在,請(qǐng)你說(shuō)明理由。思路點(diǎn)撥:本題屬于開(kāi)放型探索題,主要考查一次函數(shù)與二次函數(shù)性質(zhì)的綜合應(yīng)用。解:(1)由直線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,得SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)∵SKIPIF1<0圖8FOxy圖8FOxyEABCD∴SKIPIF1<0∴SKIPIF1<0點(diǎn)坐標(biāo)為(SKIPIF1<0,SKIPIF1<0)∵點(diǎn)SKIPIF1<0在二次函數(shù)SKIPIF1<0的圖象上∴SKIPIF1<0,解得SKIPIF1<0∴SKIPIF1<0故頂點(diǎn)SKIPIF1<0為(SKIPIF1<0,SKIPIF1<0)又∵SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)在SKIPIF1<0圖象上∴SKIPIF1<0故SKIPIF1<0,SKIPIF1<0(2)①在二次函數(shù)SKIPIF1<0的圖象上存在點(diǎn)SKIPIF1<0(點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0、SKIPIF1<0不重合),使得SKIPIF1<0是以SKIPIF1<0為一條直角邊的直角三角形由(1)可知,直線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)∴SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴若連結(jié)SKIPIF1<0,SKIPIF1<0是以SKIPIF1<0為一條直角邊的直角三角形,且點(diǎn)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)在二次函數(shù)的圖象上,則點(diǎn)SKIPIF1<0就是所求的點(diǎn)SKIPIF1<0.②解法一:設(shè)SKIPIF1<0,點(diǎn)SKIPIF1<0在二次函數(shù)SKIPIF1<0的圖象上,則SKIPIF1<0是以SKIPIF1<0為一條直角邊的直角三角形.∵SKIPIF1<0設(shè)直線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)解方程組SKIPIF1<0得SKIPIF1<0或SKIPIF1<0∴SKIPIF1<0點(diǎn)(SKIPIF1<0,SKIPIF1<0)為所求的.綜合①②,得二次函數(shù)SKIPIF1<0的圖象上存在點(diǎn)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)或SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),使得SKIPIF1<0是以SKIPIF1<0為一條直角邊的直角三角形.解法二:在SKIPIF1<0軸上取一點(diǎn)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0,由對(duì)稱性可知:SKIPIF1<0∴SKIPIF1<0設(shè)直線SKIPIF1<0與二次函數(shù)SKIPIF1<0的圖象交于點(diǎn)SKIPIF1<0,由(1)知SKIPIF1<0點(diǎn)坐標(biāo)為(SKIPIF1<0,SKIPIF1<0)所以直線SKIPIF1<0的函數(shù)關(guān)系式為SKIPIF1<0(以下解法一同)規(guī)律總結(jié):對(duì)于存在型探索題,其解題思路為:先對(duì)結(jié)論作出肯定的假設(shè),然后由肯定假設(shè)出發(fā),結(jié)合已知條件進(jìn)行正確的計(jì)算推理,再對(duì)得出的結(jié)果進(jìn)行分析檢驗(yàn),說(shuō)明假設(shè)是否正確,由此得出符合條件的數(shù)學(xué)對(duì)象存在或不存在。常見(jiàn)錯(cuò)誤:(1)審題不清,思維混亂導(dǎo)致出錯(cuò);(2)對(duì)存在情況找不全而出錯(cuò)?!?例12、(2019年南寧市)如圖SKIPIF1<0,在平面直角坐標(biāo)系中,SKIPIF1<0、SKIPIF1<0兩點(diǎn)的坐標(biāo)分別為SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),以SKIPIF1<0為直徑的半圓SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,以SKIPIF1<0為一邊作正方形SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0兩點(diǎn)的坐標(biāo);(2)連接SKIPIF1<0,試判斷直線SKIPIF1<0是否與⊙SKIPIF1<0相切?說(shuō)明你的理由;(3)在SKIPIF1<0軸上是否存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0的周長(zhǎng)最?。咳舸嬖?,求出點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。思路點(diǎn)撥:(1)根據(jù)坐標(biāo)知識(shí)和勾股定理易求;(2)思路一:連結(jié)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,在SKIPIF1<0中,易求SKIPIF1<0,再據(jù)切線的性質(zhì)可知SKIPIF1<0,再利用SKIPIF1<0,故SKIPIF1<0.思路二:利用勾股定理的逆定理證明;思路三:連結(jié)SKIPIF1<0,易證明SKIPIF1<0,因?yàn)镾KIPIF1<0是等腰三角形,又因?yàn)镾KIPIF1<0也是等腰三角形,再利用等腰三角形的性質(zhì)及等量公理可得:SKIPIF1<0,從而得證;(3)思路一:因?yàn)镾KIPIF1<0的周長(zhǎng)應(yīng)由線段SKIPIF1<0、SKIPIF1<0、SKIPIF1<0決定,而SKIPIF1<0是一定的,要使SKIPIF1<0的周長(zhǎng)最小,只有是SKIPIF1<0和最小,要滿足此要求,只有利用“線段公理”找到點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)SKIPIF1<0即可;思路二:本題也可利用一次函數(shù)知識(shí),建立SKIPIF1<0的直線方程,又因?yàn)镾KIPIF1<0軸上的SKIPIF1<0點(diǎn)也在直線SKIPIF1<0上,從而得出SKIPIF1<0點(diǎn)的坐標(biāo)。解:(1)∵SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),四邊形SKIPIF1<0是正方形∴SKIPIF1<0,⊙SKIPIF1<0的半徑為5∴SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)連接SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0(SKIPIF1<0,SKIPIF1<0) (2)方法一:直線SKIPIF1<0是⊙SKIPIF1<0的切線。證明:連接SKIPIF1<0、SKIPIF1<0,如圖SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0 ∴SKIPIF1<0,SKIPIF1<0是⊙SKIPIF1<0的切線。QQAEDC8xMPOM/圖9-1AEBDC8xMOP圖9-2M/Qyy-2-2方法二:直線SKIPIF1<0是⊙SKIPIF1<0的切線證明:連接SKIPIF1<0如圖SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0在SKIPIF1<0中∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0是直角三角形,即SKIPIF1<0∴直線SKIPIF1<0是⊙SKIPIF1<0相切.方法三:直線SKIPIF1<0是⊙SKIPIF1<0的切線證明:連接SKIPIF1<0,SKIPIF1<0,如圖SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0即SKIPIF1<0∴直線SKIPIF1<0是⊙SKIPIF1<0的切線. (3)方法一:作SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),連接SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,此時(shí)SKIPIF1<0的和最小,因?yàn)镾KIPIF1<0為定值,所以SKIPIF1<0的周長(zhǎng)最小。∵SKIPIF1<0∽SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0.方法二:作SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),連接SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,此時(shí)SKIPIF1<0的和最小,因?yàn)镾KIPIF1<0為定值,所以SKIPIF1<0的周長(zhǎng)最小。 設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0把SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)和SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)分別代入得SKIPIF1<0,解得:SKIPIF1<0∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0.評(píng)講:這是一道較復(fù)雜的幾何綜合題,熟練掌握切線的性質(zhì)及切線長(zhǎng)定理、勾股定理、線段公理、線段的中垂線性質(zhì)及平面直角坐標(biāo)系的相關(guān)知識(shí)是解決本題的關(guān)鍵。&.綜合鞏固練習(xí):一、課改區(qū)中考試題練習(xí)1.(2019年呼和浩特市)在四邊形SKIPIF1<0中,順次連接四邊中點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,構(gòu)成一個(gè)新的四邊形,請(qǐng)你對(duì)四邊形SKIPIF1<0填加一個(gè)條件,使四邊形SKIPIF1<0成為一個(gè)菱形.這個(gè)條件是.2.(SKIPIF1<0年湖南衡陽(yáng))觀察算式:SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;……用代數(shù)式表示這個(gè)規(guī)律(SKIPIF1<0為正整數(shù)):SKIPIF1<0.3.(2019年吉林?。┤鐖DSKIPIF1<0,用灰白兩色正方形瓷磚鋪設(shè)地面,第SKIPIF1<0個(gè)圖案中白色瓷磚數(shù)為_(kāi)__________.圖圖104.(2019年廣西賀州市)觀察圖SKIPIF1<0中一列有規(guī)律的數(shù),然后在“?”處填上一個(gè)合適的數(shù),這個(gè)數(shù)是______________.AA2A1A3A4A6A5B圖1224158303548?圖115.(2019年廣西百色市)如圖SKIPIF1<0,SKIPIF1<0是直角三角形,且SKIPIF1<0,SKIPIF1<0SKIPIF1<0垂足為SKIPIF1<0,SKIPIF1<0,垂足為SKIPIF1<0,SKIPIF1<0,垂足為SKIPIF1<0,……,SKIPIF1<0,垂足為SKIPIF1<0,則線段SKIPIF1<0(SKIPIF1<0為自然數(shù))的長(zhǎng)為().SKIPIF1<0、SKIPIF1<0 SKIPIF1<0、SKIPIF1<0 SKIPIF1<0、SKIPIF1<0 SKIPIF1<0、SKIPIF1<0圖13…………SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0O(1,0)(2,0)(3,0)(4,0)(5,0)x(5,1)(4,1)(3,1)(2,1)(3,2)(4,2)(4,3)(5,4)(5,3)(5,2)y圖146圖13…………SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0O(1,0)(2,0)(3,0)(4,0)(5,0)x(5,1)(4,1)(3,1)(2,1)(3,2)(4,2)(4,3)(5,4)(5,3)(5,2)y圖147.(2019年德陽(yáng))如圖SKIPIF1<0,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn),其順序按圖中“SKIPIF1<0”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)根據(jù)這個(gè)規(guī)律探索可得,第SKIPIF1<0個(gè)點(diǎn)的坐標(biāo)為_(kāi)___________.8.(2019年河南?。┤鐖DSKIPIF1<0,將圖①所示的正六邊形進(jìn)行進(jìn)行分割得到圖②,再將圖②中最小的某一個(gè)正六邊形按同樣的方式進(jìn)行分割得到圖③,再將圖③中最小的某一個(gè)正六邊形按同樣的方式進(jìn)行分割…,則第SKIPIF1<0個(gè)圖形中,共有________個(gè)正六邊形。圖圖①圖②圖③圖15……9.(2019年資陽(yáng))設(shè)SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0(SKIPIF1<0為大于SKIPIF1<0的自然數(shù)).(1)探究SKIPIF1<0是否為SKIPIF1<0的倍數(shù),并用文字語(yǔ)言表述你所獲得的結(jié)論;(2)若一個(gè)數(shù)的算術(shù)平方根是一個(gè)自然數(shù),則稱這個(gè)數(shù)是“完全平方數(shù)”.試找出SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,…這一列數(shù)中從小到大排列的前4個(gè)完全平方數(shù),并指出當(dāng)SKIPIF1<0滿足什么條件時(shí),SKIPIF1<0為完全平方數(shù)(不必說(shuō)明理由).10.(2019年山東?。┤鐖DSKIPIF1<0,SKIPIF1<0中,SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0上的點(diǎn),SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0.給出下列三個(gè)條件:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.(1)上述三個(gè)條件中,哪兩個(gè)條件可判定SKIPIF1<0是等腰三角形(用序號(hào)寫(xiě)出所有情形);O圖16EDBACMDO圖16EDBACMDBAC圖1711.(2019年隨州市)如圖SKIPIF1<0,矩形SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0的中點(diǎn)。(1)求證:SKIPIF1<0;(2)請(qǐng)你探索,當(dāng)矩形SKIPIF1<0中的一組鄰邊滿足何種數(shù)量關(guān)系時(shí),有SKIPIF1<0成立,說(shuō)明你的理由。12.(2019年成都市)已知:如圖SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0是線段SKIPIF1<0延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0的平行線與線段SKIPIF1<0的延長(zhǎng)線交于點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0、SKIPIF1<0.(1)求證:SKIPIF1<0;FEDBAC圖18PQBAC圖19(2)若SKIPIF1<0FEDBAC圖18PQBAC圖1913.(2019年常德市)如圖SKIPIF1<0,SKIPIF1<0是等邊SKIPIF1<0內(nèi)的一點(diǎn),連結(jié)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,以SKIPIF1<0為邊作SKIPIF1<0,且SKIPIF1<0,連結(jié)SKIPIF1<0.(1)觀察并猜想SKIPIF1<0與SKIPIF1<0之間的大小關(guān)系,并證明你的結(jié)論。(2)若SKIPIF1<0,連結(jié)SKIPIF1<0,試判斷SKIPIF1<0的形狀,并說(shuō)明理由.14.(2019年寧波)已知關(guān)于SKIPIF1<0的方程SKIPIF1<0.(1)當(dāng)SKIPIF1<0取何值時(shí),方程有兩個(gè)實(shí)數(shù)根;(2)為SKIPIF1<0選取一個(gè)合適的整數(shù),使方程有兩個(gè)不相等的實(shí)數(shù)根,并求這兩個(gè)根.15.(2019云南?。┮阎喝鐖DSKIPIF1<0,拋物線SKIPIF1<0經(jīng)過(guò)SKIPIF1<0(1,0)、SKIPIF1<0(5,0)、SKIPIF1<0(0,5)三點(diǎn).(1)求拋物線的函數(shù)關(guān)系式;(2)若過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0與拋物線相交于點(diǎn)SKIPIF1<0(4,SKIPIF1<0),請(qǐng)求出SKIPIF1<0的面積SKIPIF1<0的值;(3)在拋物線上求一點(diǎn)SKIPIF1<0使得SKIPIF1<0為等腰三角形并寫(xiě)出SKIPIF1<0點(diǎn)的坐標(biāo);(4)除(3)中所求的SKIPIF1<0點(diǎn)外,在拋物線上是否還存在其它的點(diǎn)SKIPIF1<0使得SKIPIF1<0為等腰三角形?若存在,請(qǐng)求出一共有幾個(gè)滿足條件的點(diǎn)SKIPIF1<0(要求簡(jiǎn)要說(shuō)明理由,但不證明);若不存在這樣的點(diǎn)SKIPIF1<0,請(qǐng)說(shuō)明理由.xxyCBAE–11O圖20圖2116.(2019年綿陽(yáng)市)如圖SKIPIF1<0,在正方形SKI

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論