整式的加減(1課時)_第1頁
整式的加減(1課時)_第2頁
整式的加減(1課時)_第3頁
整式的加減(1課時)_第4頁
整式的加減(1課時)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2.2整式的加減(1)合并同類項(xiàng)授課教師:秦麗莎長順縣第二中學(xué)1、下列式子哪些是單項(xiàng)式?哪些是多項(xiàng)式?,,,2、寫出上題中多項(xiàng)式的項(xiàng)及多項(xiàng)式次數(shù).解:多項(xiàng)式的項(xiàng)是4ab、-4,其中多項(xiàng)式的次數(shù)是2,多項(xiàng)式的項(xiàng)是a4、-2a2b2、b4,其中多項(xiàng)式的次數(shù)是4.新課引入

青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達(dá)到120千米/時,請根據(jù)這些數(shù)據(jù)回答下列問題:

在西寧到拉薩路段,列車通過非凍土地段所需時間是通過凍土地段所需時間的2.1倍,如果通過凍土地段需要t小時,能用含t的式子表示這段鐵路的全長嗎?思考問題100t+120×2.1t=100t+252t(1)運(yùn)用有理數(shù)的運(yùn)算律計算:100×2+252×2=_________,100×(-2)+252×(-2)=______;

根據(jù)(1)中的方法完成下面的運(yùn)算,并說明其中的道理:

100t+252t=_________.

我思,我進(jìn)步1知識的探究(100+252)×2(100+252)×(-2)=352×2(100+252)t=352t填空:(1)100t-252t=()t;

(2)3x2+2x2=()x2;

(3)3ab2-4ab2=(

)ab2.上述運(yùn)算有什么共同特點(diǎn),你能從中得出什么規(guī)律?100t和-252t

都含有相同的字母t,并且t

的指數(shù)都是1,我們就把100t與-252t

叫做同類項(xiàng)。

像3ab2

與-4ab2

這樣,所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。幾個常數(shù)項(xiàng)也是同類項(xiàng)。知識的探究100-2523+23-4合并同類項(xiàng):

把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)。定義:法則:(1)系數(shù):系數(shù)相加;(2)字母:字母和字母的指數(shù)不變。

下列各題計算的結(jié)果對不對?如果不對,指出錯在哪里?瞧一瞧:()()()()錯錯對錯知識的升華同類項(xiàng)的定義:所含__________,并且_________的_____也相同的項(xiàng),叫做同類項(xiàng)。幾個常數(shù)項(xiàng)也是_______。判斷同類項(xiàng):1、字母_____;2、相同字母的指數(shù)也_____。與______無關(guān),與_________無關(guān)。合并同類項(xiàng)的法則:______________相加,作為結(jié)果的系數(shù),字母和字母的指數(shù)______。字母相同相同字母指數(shù)同類項(xiàng)相同相同系數(shù)字母順序同類項(xiàng)的系數(shù)不變

2、下列各組是同類項(xiàng)的是()

A2x3與3x2B12ax與8bxCx4與a4Dπ與-33、5x2y

和42ymxn是同類項(xiàng),則

m=______,n=____________4、–xmy與45ynx3是同類項(xiàng),則

m=______,n=______1、你能寫出兩個項(xiàng)是同類項(xiàng)的例子嗎?如-2abc與4abc;0.8m2n與2nm2D1231火眼金睛

找出多項(xiàng)式中的同類項(xiàng)并合并:

4x2+2x+7+3x-8x2-2

我思,我進(jìn)步2知識的應(yīng)用=4x2-8x2+2x+3x+7-2=(4x2-8x2)+(2x+3x)+(7-2)=(4-8)x2+(2+3)x+(7-2)=-4x2+5x+5(交換律)(結(jié)合律)(分配律)

例1

合并下列各式的同類項(xiàng):方法:(1)系數(shù):系數(shù)相加;(2)字母:字母和字母的指數(shù)不變。

例1

合并下列各式的同類項(xiàng):(-3x2y+2x2y)+(3xy2

-2xy2)=(-3+2)x2y+(3-2)xy2=-x2y+xy2解:原式=方法:(1)系數(shù):系數(shù)相加;(2)字母:字母和字母的指數(shù)不變。

例1

合并下列各式的同類項(xiàng):解:原式=(4a2

-4a2)+(3b2

-4b2)+2ab=(4-4)a2+(3-4)b2+2ab=-b2+2ab方法:(1)系數(shù):系數(shù)相加;(2)字母:字母和字母的指數(shù)不變。先化簡,再求值例2(2x2+

x2-

3x2)+(-5x+4x)-2解:原式==(2

+

1-

3)x2+(-5+4)x-2=-x-2當(dāng)x=時,原式=先化簡,再求值例2解:原式==abc當(dāng)a=,b=2,c=-3時,原式==1

1.水庫中水位第一天連續(xù)下降了a小時,每小時平均下降2cm;第二天連續(xù)上升了a小時,每小時平均上0.5cm,這兩天水位總的變化情況如何?

2.某商店原有5袋大米,每袋大米為x千克.上午賣出3袋,下午又購進(jìn)同樣包裝的大米4袋.進(jìn)貨后這個商店有大米多少千克?練一練同類項(xiàng)合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論