版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
關(guān)于高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探討
論文摘要:數(shù)學(xué)建模的思想就是用數(shù)學(xué)的思路、方法去解決實際生產(chǎn)、生活當(dāng)中所遇到的問題。當(dāng)前高等數(shù)學(xué)教學(xué)的一個很大的缺陷就是“學(xué)”和“用”脫節(jié)。把數(shù)學(xué)建模的思想溶入到教學(xué)中去是一個解決問題的很好的方法。
一、數(shù)學(xué)建模在高等數(shù)學(xué)教學(xué)中的重要作用
數(shù)學(xué)是在實際應(yīng)用的需求中產(chǎn)生的,要解決實際問題就必需建立數(shù)學(xué)模型,即數(shù)學(xué)建模。數(shù)學(xué)建模是指對現(xiàn)實世界的一些特定對象,為了某特定目的,做出一些重要的簡化和假設(shè),運用適當(dāng)?shù)臄?shù)學(xué)工具得到一個數(shù)學(xué)結(jié)構(gòu),用它來解釋特定現(xiàn)象的現(xiàn)實性態(tài),預(yù)測對象的未來狀況,提供處理對象的優(yōu)化決策和控制,設(shè)計滿足某種需要的產(chǎn)品等。從此意義上講數(shù)學(xué)建模和數(shù)學(xué)一樣有古老歷史。例如,歐幾里德幾何就是一個古老的數(shù)學(xué)模型,牛頓萬有引力定律也是數(shù)學(xué)建模的一個光輝典范。今天,數(shù)學(xué)以空前的廣度和深度向其它科學(xué)技術(shù)領(lǐng)域滲透,過去很少應(yīng)用數(shù)學(xué)的領(lǐng)域現(xiàn)在迅速走向定量化,數(shù)量化,需建立大量的數(shù)學(xué)模型。特別是新技術(shù)、新工藝蓬勃興起,計算機的普及和廣泛應(yīng)用,數(shù)學(xué)在許多高新技術(shù)上起著十分關(guān)鍵的作用。因此數(shù)學(xué)建模被時代賦予了更為重要的意義。
二、數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)中的運用
高等數(shù)學(xué)教學(xué)的重點是提高學(xué)生的數(shù)學(xué)素質(zhì),學(xué)生的數(shù)學(xué)素質(zhì)主要體現(xiàn)為:抽象思維和邏輯推理的能力;如今在一些教材中也漸漸的補充了與實際問題相對應(yīng)的例子,習(xí)題。如:人大出版社中的第四章第八節(jié)所提到的邊際分析與彈性分析,以及幾乎各種教材中對于函數(shù)極值問題的實際應(yīng)用的例子。其實這就是實際應(yīng)用中的一個簡單的建摸問題。但僅僅知道運算還是不夠的,我們還要從具體問題給出的數(shù)據(jù)建立適用的模型。下面我們就具體的例子來看看高等數(shù)學(xué)對經(jīng)濟數(shù)學(xué)的應(yīng)用。例:有資料記載某農(nóng)村的達到小康水平的標準是年人均收入為2000元,據(jù)調(diào)查該村公400人,其中一戶4人年收入60萬,另一戶4人20萬,其中70%的人年收入在300元左右,其余在500左右。對于該村是否能定位在已經(jīng)達到了小康水平呢。首先我們計算平均收入:60萬,20萬各一戶共8人,300元共400×70%=280人,500元共400-288=112人。
平均收入為元
從這個數(shù)據(jù)我們可以看出該村的平均收入超過2000元,所以認為達到了小康水平,但我們在來看一下數(shù)據(jù),有%的人均收入低于2000千,所以單從人均收入來衡量是不科學(xué)的,那么在概率論中我們利用人均年收入的標準差a來衡量這個標準。
我們可以看出標準差是平均水平的六倍多,標準差系數(shù)竟超過100%,所以我們不能把該村看作是達到了小康水平。因此我們要真正的把高等數(shù)學(xué)融入到實際應(yīng)用當(dāng)中是我們高確良等教育的一個重點要改革的內(nèi)容。為了在概念的引入中展現(xiàn)數(shù)學(xué)建模,首先必須提出具有實際背景的引例。下面我們就以高等數(shù)學(xué)中導(dǎo)數(shù)這一概念為例加以說明。
引例
模型I:變速直線運動的瞬時速度
1、提出問題:設(shè)有一物體在作變速運動,如何求它在任一時刻的瞬時速度?
2、建立模型
分析:我們原來只學(xué)過求勻速運動在某一時刻的速度公式:S=vt那么,對于變速問題,我們該如何解決呢?師生討論:由于變速運動的速度通常是連續(xù)變化的,所以當(dāng)時間變化很小時,可以近似當(dāng)勻速運動來對待。假設(shè):設(shè)一物體作變速直線運動,以它的運動直線為數(shù)軸,則在物體的運動過程中,對于每一時刻t,物體的相應(yīng)位置可以用數(shù)軸上的一個坐標S表示,即S與t之間存在函數(shù)關(guān)系:s=s(t)。稱其為位移函數(shù)。設(shè)在t0時刻物體的位置為S=s(t0)。當(dāng)在t0時刻,給時間增加了△t,物體的位置變?yōu)镾=(t0+△t):此時位移改變了△S=S(t0+△t)-S(t0)。于是,物體在t0到t0+△t這段時間內(nèi)的平均速度為:v=當(dāng)△t很小時,v可作為物體在t0時刻瞬時速度的近似值。且當(dāng)—△t—越小,v就越接近物體在t0時刻的瞬時速度v,即vt0=[(1)式];
(1)即為己知物體運動的位移函數(shù)s=s(t),求物體運動到任一時刻t0時的瞬時速度的數(shù)學(xué)模型。
模型II:非恒定電流的電流強度。己知從0到t這段時間流過導(dǎo)體橫截面的電量為Q=Q(t),求在t0時刻通過導(dǎo)體的電流強度?通過對此模型的分析,同學(xué)們發(fā)現(xiàn)建立模型II的方法步驟與模型I完全相同,從而采用與模型I類似的方法,建立的數(shù)學(xué)模型為:It0=要求解這兩個模型,對于簡單的函數(shù)還容易計算,但對于復(fù)雜的函數(shù),求極限很難求出。為了求解這
兩個模型,我們拋開它們的實際意義單從數(shù)學(xué)結(jié)構(gòu)上看,卻具有完全相同的形式,可歸結(jié)為同一個數(shù)學(xué)模型,即求函數(shù)改變量與自變量改變量比值,當(dāng)自變量改變量趨近于零時的極限值。在自然科學(xué)和經(jīng)濟活動中也有很多問題也可歸結(jié)為這樣的數(shù)學(xué)模型,為此,我們把這種形式的極限定義為函數(shù)的導(dǎo)數(shù)。
導(dǎo)數(shù)的概念
定義:設(shè)函數(shù)y=f(x)在點x0的某一領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x時,函數(shù)有相應(yīng)的增量△y=f(x0+△x)-f(x0)。如果當(dāng)△x→0時△y△x的極限存在,這個極限值就叫做函數(shù)y=f(x)在x0點的導(dǎo)數(shù)。即函數(shù)y=f(x)在點x0處可導(dǎo),記作f′(x0)或f′|x=x0即f′(x0)=。有了導(dǎo)數(shù)的定義,前面兩個問題可以重述為:(1)變速直線運動在時刻t0的瞬時速度,就是位移函數(shù)S=S(t)在t0處對時間t的導(dǎo)數(shù)。即vt0=S′(t0)。(2)非恒定電流在時刻t0的電流強度,是電量函數(shù)Q=Q(t)在t0處對時間t的導(dǎo)數(shù)。即It0=Q′(t0)。
如果函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)每一點都可導(dǎo),稱y=f(x)在區(qū)間(a,b)內(nèi)可導(dǎo)。這時,對于(a,b)中的每一個確定的x值,對應(yīng)著一個確定的導(dǎo)數(shù)值f′(x),這樣就確定了一個新的函數(shù),此函數(shù)稱為函數(shù)y=f(x)的導(dǎo)函數(shù),記作y′或f′(x),導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。顯然,y=f(x)在x0處的導(dǎo)數(shù)f′(x0),就是導(dǎo)函數(shù)f′(x)在點x0處的函數(shù)值。由導(dǎo)函數(shù)的定義,我們可以推導(dǎo)出一系列的求導(dǎo)公式,求導(dǎo)法則。(略)有了求導(dǎo)公式,求導(dǎo)法則后,我們再反回去求解前面的模型就容易得多?,F(xiàn)在我們就返回去接著前面模型I的建模步驟。
3、求解模型:我們就以自由落體運動為例來求解。設(shè)它的位移函數(shù)為s=gt2,求它在2秒末的瞬時速度?由導(dǎo)數(shù)定義可知:v(2)=S′(2)=*2gtlt=2=2tg
4、模型檢驗:上面所求結(jié)果與高中物理上所求得的結(jié)果一致。從而驗證了前面所建立模型的正確性。
5、模型的推廣:前面兩個模型的實質(zhì),就是函數(shù)在某點的瞬時變化率。由此可以推廣為:求函數(shù)在某一點的變化率問題都可以直接用導(dǎo)數(shù)來解,而不須像前面那樣重復(fù)建立模型。除了在概念教學(xué)中可以浸透數(shù)學(xué)建模的思想和方法外,還可以在習(xí)題教學(xué)中浸透這種思想和方法。在這里就不一一列舉。
通過數(shù)學(xué)建模的思想引入高等數(shù)學(xué)的教學(xué)中,其主要目的是通過數(shù)學(xué)建模的過程來使學(xué)生進一步熟悉基本的教學(xué)內(nèi)容,培養(yǎng)學(xué)生的創(chuàng)新精神
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院入住老人健康知識普及制度
- 2026年會計從業(yè)資格考試會計基礎(chǔ)與實務(wù)操作預(yù)測模擬題集
- 2026年委托理財協(xié)議
- 2026年委托丹劑合同
- 金屬加工行業(yè)廢氣處理方案
- 檢驗科廢棄一次性用品的處理制度及流程
- 檔案規(guī)范管理出現(xiàn)問題的問題原因剖析
- 2025年西安健康工程職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題含答案解析(必刷)
- 2024年湖北兵器工業(yè)職工大學(xué)馬克思主義基本原理概論期末考試題附答案解析(奪冠)
- 2024年私立華聯(lián)學(xué)院馬克思主義基本原理概論期末考試題帶答案解析(必刷)
- 航空安保審計培訓(xùn)課件
- 高層建筑滅火器配置專項施工方案
- 2023-2024學(xué)年廣東深圳紅嶺中學(xué)高二(上)學(xué)段一數(shù)學(xué)試題含答案
- 2026元旦主題班會:馬年猜猜樂馬年成語教學(xué)課件
- 2025中國農(nóng)業(yè)科學(xué)院植物保護研究所第二批招聘創(chuàng)新中心科研崗筆試筆試參考試題附答案解析
- 反洗錢審計師反洗錢審計技巧與方法
- 檢驗科安全生產(chǎn)培訓(xùn)課件
- 爆破施工安全管理方案
- 2026全國青少年模擬飛行考核理論知識題庫40題含答案(綜合卷)
- 2025線粒體醫(yī)學(xué)行業(yè)發(fā)展現(xiàn)狀與未來趨勢白皮書
- 靜壓機工程樁吊裝專項方案(2025版)
評論
0/150
提交評論