四川省成都市龍泉一中、新都一中等九校2022-2023學年數(shù)學高一第二學期期末統(tǒng)考試題含解析_第1頁
四川省成都市龍泉一中、新都一中等九校2022-2023學年數(shù)學高一第二學期期末統(tǒng)考試題含解析_第2頁
四川省成都市龍泉一中、新都一中等九校2022-2023學年數(shù)學高一第二學期期末統(tǒng)考試題含解析_第3頁
四川省成都市龍泉一中、新都一中等九校2022-2023學年數(shù)學高一第二學期期末統(tǒng)考試題含解析_第4頁
四川省成都市龍泉一中、新都一中等九校2022-2023學年數(shù)學高一第二學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等差數(shù)列中,若,且它的前項和有最大值,則使成立的正整數(shù)的最大值是()A.15 B.16 C.17 D.142.在△ABC中,a,b,c分別為內角A,B,C所對的邊,b=c,且滿足=,若點O是△ABC外一點,∠AOB=θ(0<θ<π),OA=2OB=2,則平面四邊形OACB面積的最大值是()A. B. C.3 D.3.若且,則下列不等式成立的是()A. B. C. D.4.已知,且,,則()A. B. C. D.5.過點且與原點距離最大的直線方程是()A. B.C. D.6.若,直線的傾斜角等于()A. B. C. D.7.已知數(shù)列是公差不為零的等差數(shù)列,函數(shù)是定義在上的單調遞增的奇函數(shù),數(shù)列的前項和為,對于命題:①若數(shù)列為遞增數(shù)列,則對一切,②若對一切,,則數(shù)列為遞增數(shù)列③若存在,使得,則存在,使得④若存在,使得,則存在,使得其中正確命題的個數(shù)為()A.0 B.1 C.2 D.38.中,,,,則()A.1 B. C. D.49.設復數(shù)(是虛數(shù)單位),則在復平面內,復數(shù)對應的點的坐標為()A. B. C. D.10.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位二、填空題:本大題共6小題,每小題5分,共30分。11.在上,滿足的的取值范圍是______.12.已知三點、、共線,則a=_______.13.等比數(shù)列中,若,,則______.14.正六棱柱各棱長均為,則一動點從出發(fā)沿表面移動到時的最短路程為__________.15.函數(shù)的最小正周期為_______.16.已知圓截直線所得線段的長度是,則圓M與圓的位置關系是_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,在三棱柱中,與都為正三角形,且平面,分別是的中點.求證:(1)平面平面;(2)平面平面.18.如圖,在中,點在邊上,,,.(1)求邊的長;(2)若的面積是,求的值.19.已知的頂點,AB邊上的中線CM所在直線方程為,AC邊上的高BH所在直線方程為.(1)求C點坐標;(2)求直線BC的方程.20.已知,,當為何值時:(1)與垂直;(2)與平行.21.某班在一次個人投籃比賽中,記錄了在規(guī)定時間內投進個球的人數(shù)分布情況:進球數(shù)(個)012345投進個球的人數(shù)(人)1272其中和對應的數(shù)據(jù)不小心丟失了,已知進球3個或3個以上,人均投進4個球;進球5個或5個以下,人均投進2.5個球.(1)投進3個球和4個球的分別有多少人?(2)從進球數(shù)為3,4,5的所有人中任取2人,求這2人進球數(shù)之和為8的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由題意可得,,且,由等差數(shù)列的性質和求和公式可得結論.【詳解】∵等差數(shù)列的前項和有最大值,∴等差數(shù)列為遞減數(shù)列,又,∴,,∴,又,,∴成立的正整數(shù)的最大值是17,故選C.【點睛】本題考查等差數(shù)列的性質,涉及等差數(shù)列的求和公式,屬中檔題.2、A【解析】

根據(jù)正弦和角公式化簡得是正三角形,再將平面四邊形OACB面積表示成的三角函數(shù),利用三角函數(shù)求得最值.【詳解】由已知得:即所以即又因為所以所以又因為所以是等邊三角形.所以在中,由余弦定理得且因為平面四邊形OACB面積為當時,有最大值,此時平面四邊形OACB面積有最大值,故選A.【點睛】本題關鍵在于把所求面積表示成角的三角函數(shù),屬于難度題.3、D【解析】

利用作差法對每一個選項逐一判斷分析.【詳解】選項A,所以a≥b,所以該選項錯誤;選項B,,符合不能確定,所以該選項錯誤;選項C,,符合不能確定,所以該選項錯誤;選項D,,所以,所以該選項正確.故選D【點睛】本題主要考查實數(shù)大小的比較,意在考查學生對該知識的理解掌握水平和分析推理能力.4、C【解析】

根據(jù)同角三角函數(shù)的基本關系及兩角和差的正弦公式計算可得.【詳解】解:因為,.因為,所以.因為,,所以.所以.故選:【點睛】本題考查同角三角函數(shù)的基本關系,兩角和差的正弦公式,屬于中檔題.5、A【解析】

當直線與垂直時距離最大,進而可得直線的斜率,從而得到直線方程?!驹斀狻吭c坐標為,根據(jù)題意可知當直線與垂直時距離最大,由兩點斜率公式可得:所以所求直線的斜率為:故所求直線的方程為:,化簡可得:故答案選A【點睛】本題考查點到直線的距離公式,涉及直線的點斜式方程和一般方程,屬于基礎題。6、A【解析】

根據(jù)以及可求出直線的傾斜角.【詳解】,,且直線的斜率為,因此,直線的傾斜角為.故選:A.【點睛】本題考查直線傾斜角的計算,要熟悉斜率與傾斜角之間的關系,還要根據(jù)傾斜角的取值范圍來求解,考查計算能力,屬于基礎題.7、C【解析】

利用函數(shù)奇偶性和單調性,通過舉例和證明逐項分析.【詳解】①取,,則,故①錯;②對一切,,則,又因為是上的單調遞增函數(shù),所以,若遞減,設,且,且,所以,則,則,與題設矛盾,所以遞增,故②正確;③取,則,,令,所以,但是,故③錯誤;④因為,所以,所以,則,則,則存在,使得,故④正確.故選:C.【點睛】本題函數(shù)性質與數(shù)列的綜合,難度較難.分析存在性問題時,如果比較難分析,也可以從反面去舉例子說明命題不成立,這也是一種常規(guī)思路.8、C【解析】

利用三角形內角和為可求得;利用正弦定理可求得結果.【詳解】由正弦定理得:本題正確選項:【點睛】本題考查正弦定理解三角形,屬于基礎題.9、A【解析】,所以復數(shù)對應的點為,故選A.10、D【解析】

根據(jù)三角函數(shù)圖象的平移變換可直接得到圖象變換的過程.【詳解】因為,所以向右平移個單位即可得到的圖象.故選:D.【點睛】本題考查三角函數(shù)圖象的平移變換,難度較易.注意左右平移時對應的規(guī)律:左加右減.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由,結合三角函數(shù)線,即可求解,得到答案.【詳解】如圖所示,因為,所以滿足的的取值范圍為.【點睛】本題主要考查了特殊角的三角函數(shù)值,以及三角函數(shù)線的應用,著重考查了推理與運算能力,屬于基礎題.12、【解析】

由三點、、共線,則有,再利用向量共線的坐標運算即可得解.【詳解】解:由、、,則,,又三點、、共線,則,則,解得:,故答案為:.【點睛】本題考查了向量共線的坐標運算,屬基礎題.13、【解析】

設的首項為,公比為,根據(jù),列出方程組,求出和即可得解.【詳解】設的首項為,公比為,則:,解之得,所以:.故答案為:.【點睛】本題考查等比數(shù)列中某項的求法,解題關鍵是根據(jù)題意列出方程組,需要注意的是為了簡化運算不用直接求解,解出即可,屬于基礎題.14、【解析】

根據(jù)可能走的路徑,將所給的正六棱柱展開,利用平面幾何知識求解比較.【詳解】將所給的正六棱柱下圖(2)表面按圖(1)展開.,,,故從A沿正側面和上表面到D1的路程最短為故答案為:.【點睛】本題主要考查了空間幾何體展形圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.15、【解析】

將三角函數(shù)進行降次,然后通過輔助角公式化為一個名稱,最后利用周期公式得到結果.【詳解】,.【點睛】本題主要考查二倍角公式,及輔助角公式,周期的運算,難度不大.16、相交【解析】

根據(jù)直線與圓相交的弦長公式,求出的值,結合兩圓的位置關系進行判斷即可.【詳解】解:圓的標準方程為,則圓心為,半徑,圓心到直線的距離,圓截直線所得線段的長度是,即,,則圓心為,半徑,圓的圓心為,半徑,則,,,,即兩個圓相交.故答案為:相交.【點睛】本題主要考查直線和圓相交的應用,以及兩圓位置關系的判斷,根據(jù)相交弦長公式求出的值是解決本題的關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析.(2)見解析.【解析】

(1)由分別是的中點,證得,由線面平行的判定定理,可得平面,平面,再根據(jù)面面平行的判定定理,即可證得平面平面.(2)利用線面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【詳解】(1)在三棱柱中,因為分別是的中點,所以,根據(jù)線面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【點睛】本題考查線面位置關系的判定與證明,熟練掌握空間中線面位置關系的定義、判定、幾何特征是解答的關鍵,其中垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.18、(1)2;(2)【解析】

(1)設,利用余弦定理列方程可得:,解方程即可(2)利用(1)中結果即可判斷為等邊三角形,即可求得中邊上的高為,再利用的面積是即可求得:,結合余弦定理可得:,再利用正弦定理可得:,問題得解【詳解】(1)在中,設,則,由余弦定理得:即:解之得:,即邊的長為2.(2)由(1)得為等邊三角形,作于,則∴,故在中,由余弦定理得:∴在中,由正弦定理得:,即:∴∴【點睛】本題主要考查了利用正、余弦定理解三角形,還考查了三角形面積公式的應用及計算能力,屬于中檔題19、(1);(2)【解析】

(1)根據(jù)點斜式求出AC邊所在的直線方程,再由CM所在直線方程,兩方程聯(lián)立即可求解.(2)設,根據(jù)題意可得,,兩式聯(lián)立解得的值,再根據(jù)兩點式即可得到直線BC的方程.【詳解】(1)AC邊上的高BH所在直線方程為,且,AC邊所在的直線方程為,由AB邊上的中線CM所在直線方程為,,解得,故C點坐標為.(2)設,則由AC邊上的高BH所在直線方程為,可得,AB邊上的中線CM所在直線方程為,,,解得,故點的坐標為,則直線BC的方程為,即.【點睛】本題考查了點斜式方程、兩點式方程,同時考查了解二元一次方程組,屬于基礎題.20、(1);(2)【解析】

根據(jù)向量坐標運算計算得到與的坐標(1)由垂直關系得到數(shù)量積為,可構造方程求得;(2)由向量平行的坐標表示可構造方程求得.【詳解】,(1)由與垂直得:,解得:(2)由與平行得:,解得:【點睛】本題考查平面向量平行和垂直的坐標表示;關鍵是能夠明確兩向量垂直可得;兩向量平行可得.21、(1)投進3個球和4個球的分別有2人和2人;(2).【解析】

(1)設投進3個球和4個球的分別有,人,則,解方程組即得解.(2)利用古典概型的概率求這2人進球數(shù)之和為8的概率.【詳解】解:(1)設投進3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論