八年級數(shù)學蘇科版上冊《第1章全等三角形》單元培優(yōu)提升訓練(解析版)_第1頁
八年級數(shù)學蘇科版上冊《第1章全等三角形》單元培優(yōu)提升訓練(解析版)_第2頁
八年級數(shù)學蘇科版上冊《第1章全等三角形》單元培優(yōu)提升訓練(解析版)_第3頁
八年級數(shù)學蘇科版上冊《第1章全等三角形》單元培優(yōu)提升訓練(解析版)_第4頁
八年級數(shù)學蘇科版上冊《第1章全等三角形》單元培優(yōu)提升訓練(解析版)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

八年級數(shù)學蘇科版上冊《第1章全等三角形》單元培優(yōu)提升訓練一.選擇題1.如圖,已知方格紙中是4個相同的正方形,則∠1與∠2的和為()A.45° B.60° C.90° D.100°2.如圖,在△ABC和△DEF中,AC=DF,AB=DE,添加下列一個條件后,仍然不能證明△ABC≌△DEF,這個條件是()A.∠A=∠D B.BE=CF C.∠ACB=∠DFE=90° D.∠B=∠DEF3.如圖,在Rt△ABC中,∠ABC=90°,D是CB延長線上的點,BD=BA,DE⊥AC于E,交AB于點F,若DC=2.6,BF=1,則AF的長為()A.0.6 B.0.8 C.1 D.1.64.在△ABC和△FED中,已知∠B=∠E,BC=ED,要根據(jù)“SAS”說明這兩個三角形全等,還需要添加的條件是()A.AB=DF B.AC=EF C.AB=FE D.AC=DF5.如圖,在△ABC中,∠ACB=90°,Rt△ABC≌Rt△AB'C',且∠ABC=∠CAB',連接BC',并取BC'的中點D,則下列四種說法:①AC'∥BC;②△ACC'是等腰直角三角形;③AD平分∠CAB';④AD⊥CB'.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個6.如圖,已知△ABC的六個元素,則下面甲、乙、丙三個三角形中和△ABC全等的圖形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙二.填空題7.如圖,△ABC≌△DBE,△ABC的周長為30,AB=9,BE=8,則AC的長是.8.如圖所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,則∠3=.9.如圖,△ABC≌△ADE,∠EAC=25°,則∠BAD=°.10.一個三角形的三邊為2、5、x,另一個三角形的三邊為y、2、6,若這兩個三角形全等,則x+y=.三.解答題11.已知:如圖,AC,DB相交于點O,AB=DC,∠ABO=∠DCO.求證:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.12.如圖△ABF中,E是邊AF的中點,點C在BF上,作AD∥BF交CE的延長線于點D.(1)求證:△ADE≌△FCE.(2)若∠CEF=90°,AD=5,CE=4,求點E到BF的距離.13.如圖,△ABC中,AB=AC,點E,F(xiàn)在邊BC上,AE=AF,點D在AF的延長線上,AD=AC.(1)求證:△ABE≌△ACF;(2)若∠BAE=30°,求∠ADC的度數(shù).14.如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連接AE,DE,DC.(1)求證:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度數(shù).15.如圖,點M、N分別在正五邊形ABCDE的邊BC、CD上,且BM=CN,AM交BN于點P.(1)求證:AM=BN;(2)求∠APN的度數(shù).16.已知:如圖,AC∥DF,AC=DF,AB=DE.求證:(1)△ABC≌△DEF;(2)BC∥EF.17.如圖,已知在△ABC中,AB=AC=10厘米,BC=8厘米,點D為AB的中點.(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.①若點Q的運動速度與點P的運動速度相等,則經(jīng)過1秒后,△BPD與△CQP是否全等?請說明理由;②若點Q的運動速度與點P的運動速度不相等,則當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?(2)若點Q以②中的運動速度從C點出發(fā),點P以原來的運動速度從B點同時出發(fā),都逆時針沿△ABC的三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇.18.如圖,∠1=∠2,∠A=∠B,AE=BE,點D在邊AC上,AE與BD相交于點O.(1)求證:△AEC≌△BED;(2)若∠2=30°,求∠C的度數(shù).19.已知,如圖,AB=AE,AB∥DE,∠D=∠ACB.(1)求證:△ABC≌△EAD;(2)已知:DE=3,AB=7,求CE的長.20.在△ABM中,∠ABM=45°,AM⊥BM,垂足為M,點C是BM延長線上一點,連接AC.如圖,點D是線段AM上一點,MD=MC,點E是△ABC外一點,EC=AC,連接ED并延長交BC于點F,且點F是線段BC的中點,求證:∠BDF=∠CEF.

參考答案一.選擇題1.解:在△ABC和△DFE中,,∴△ABC≌△DFE(SAS),∴∠1=∠BAC,∵∠BAC+∠2=90°,∴∠1+∠2=90°,故選:C.2.解:∵AC=DF,AB=DE,∴添加∠A=∠D,可利用SAS證明△ABC≌△DEF,故A正確;∴添加BE=CF,得出BC=EF,利用SSS證明△ABC≌△DEF,故B正確;∴添加∠ACB=∠DFE=90°,利用HL證明Rt△ABC≌Rt△DEF,故C正確;故選:D.3.解:∵DE⊥AC于E,∴∠FDB+∠C=90°,∵∠ABC=90°,∴∠D+∠DFB=90°,∴∠C=∠BFD,在△DBF與△ABC中,,∴△DBF≌△ABC(AAS),∴BF=BC,∵DC=2.6,BF=1,∴AF=AB﹣BF=BD﹣BF=DC﹣BF﹣BF=2.6﹣1﹣1=0.6,故選:A.4.解:還需要添加的條件是AB=FE.在△ABC和△FED中,,∴△ABC≌△FED(SAS).故選:C.5.解:∵Rt△ABC≌Rt△AB'C',∴AB=AB',AC=AC',∠ABC=∠AB'C',∠ACB=∠AC'B'=90°,∵∠ABC=∠CAB',∴∠CAB'=∠AB'C',∴AC∥B'C',∴∠CAC'+∠AC'B'=90°,∴∠CAC'=90°=∠ACB,∴AC'∥BC,故①正確;∵AC=AC',∠CAC'=90°,∴△CAC'是等腰直角三角形,故②正確;若AB=AC'時,∵點D是BC'中點,∴AD⊥C'B,∠BAD=∠C'AD,∴∠CAD=∠B'AD,即AD平分∠CAB',∵AB≠AC',∴③錯誤;如圖,延長AD交BC的延長線于H,∵∠ACB=∠CAC'=90°,∴AC'∥BC,∴∠DAC'=∠H,又∵∠ADC'=∠BDH,C'D=BD,∴△ADC'≌△BDH(AAS),∴AC'=BH=AC,又∵∠ABC=∠CAB',AB=AB',∴△ACB'≌△BHA(SAS),∴∠ACB'=∠H,∵∠ACB'+∠HCB'=90°,∴∠H+∠HCB'=90°,∴AD⊥B'C,故④正確;故選:C.6.解:圖甲不符合三角形全等的判定定理,即圖甲和△ABC不全等;圖乙符合SAS定理,即圖乙和△ABC全等;圖丙符合AAS定理,即圖丙和△ABC全等;故選:B.二.填空題7.解:∵△ABC≌△DBE,BE=8,∴BC=BE=8,∵△ABC的周長為30,∴AB+AC+BC=30,∴AC=30﹣AB﹣BC=13,故答案為:13.8.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案為:55°.9.解:∵△ABC≌△ADE,∴∠CAB=∠EAD,∴∠CAB﹣∠EAB=∠EAD﹣∠BAD,即:∠BAD=∠EAC=25°,故答案為25.10.解:∵這兩個三角形全等,兩個三角形中都有2∴長度為2的是對應邊,x應是另一個三角形中的邊6.同理可得y=5∴x+y=11.故答案為:11.三.解答題11.證明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.12.(1)證明:∵AD∥CF,∴∠D=∠FCE,∵E是AF的中點,∴AE=EF,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS).(2)解:如圖,過點E作EH⊥BF于H.∵△ADE≌△FCE,∴CF=AD=5,∵∠CEF=90°,∴EF===3,∵S△ECF=?CF?EH=?EC?EF,∴EH==.13.證明:(1)∵AB=AC,∴∠B=∠ACF,∵AE=AF,∴∠AEF=∠AFE,∴∠AEF+∠AEB=∠AFE+∠AFC=180°,∴∠AEB=∠AFC,在△ABE和△ACF中,,∴△ABE≌△ACF(AAS);(2)解:∵△ABE≌△ACF,∠BAE=30°,∴∠BAE=∠CAF=30°,∵AD=AC,∴∠ADC=∠ACD,∴∠ADC==75°.答:∠ADC的度數(shù)為75°.14.(1)證明:∵∠ABC=90°,∴∠DBC=90°,在△ABE和△CBD中∴△ABE≌△CBD(SAS);(2)解:∵AB=CB,∠ABC=90°,∴∠BCA=45°,∴∠AEB=∠CAE+∠BCA=30°+45°=75°,∵△ABE≌△CBD,∴∠BDC=∠AEB=75°.15.(1)證明:∵多邊形ABCDE是正五邊形,∴AB=BC,∠ABM=∠BCN,在△ABM和△BCN中,,∴△ABM≌△BCN(SAS),∴AM=BN;(2)解:∵多邊形ABCDE是正五邊形,∴∠ABC=∠ABN+∠CBN=,∵△ABM≌△BCN,∴∠BAM=∠CBN,∵∠APN是△ABP的外角,∴∠APN=∠ABN+∠BAM=∠ABN+∠CBN=108°.16.證明:(1)∵AC∥DF,∴∠A=∠FDE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),(2)∵△ABC≌△DEF,∴∠ABC=∠E,∴BC∥EF.17.解:(1)①△BPD與△CQP全等,理由如下:依題意,BP=CQ=3,PC=8﹣3=5,∵AB=AC,∴∠B=∠C;∵AB=10,D為AB的中點,∴BD=PC=5,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);②)∵vP≠vQ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=4cm,CQ=BD=5cm,∴點P,點Q運動的時間t==秒,∴vQ===(厘米/秒);(2)設Q點ts追上P點,則(﹣3)t=2×10,∴t=s,∴SQ=×=100=3×28+16,∴P、Q第一次在邊AB上(距離A6cm處)相遇.18.證明:(1)∵∠1=∠2∴∠1+∠AED=∠2+∠AED,即∠AEC=∠BED,在△AEC和△BED中,,∴△AEC≌△BED(ASA);(2)∵△AEC≌△BED,∴DE=EC,∴∠EDC=∠C,∵∠1=∠2=3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論