2024屆江西省九江市九江有色金屬冶煉廠職工子弟學校數(shù)學九上期末統(tǒng)考模擬試題含解析_第1頁
2024屆江西省九江市九江有色金屬冶煉廠職工子弟學校數(shù)學九上期末統(tǒng)考模擬試題含解析_第2頁
2024屆江西省九江市九江有色金屬冶煉廠職工子弟學校數(shù)學九上期末統(tǒng)考模擬試題含解析_第3頁
2024屆江西省九江市九江有色金屬冶煉廠職工子弟學校數(shù)學九上期末統(tǒng)考模擬試題含解析_第4頁
2024屆江西省九江市九江有色金屬冶煉廠職工子弟學校數(shù)學九上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆江西省九江市九江有色金屬冶煉廠職工子弟學校數(shù)學九上期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.反比例函數(shù)的圖象位于()A.第一、三象限 B.第二、四象限 C.第二、三象限 D.第一、二象限2.下列實數(shù)中,介于與之間的是()A. B. C. D.3.半徑為10的⊙O和直線l上一點A,且OA=10,則直線l與⊙O的位置關系是()A.相切 B.相交 C.相離 D.相切或相交4.從一定高度拋一個瓶蓋100次,落地后蓋面朝下的有55次,則下列說法中錯誤的是A.蓋面朝下的頻數(shù)是55B.蓋面朝下的頻率是0.55C.蓋面朝下的概率不一定是0.55D.同樣的試驗做200次,落地后蓋面朝下的有110次5.如圖,三個邊長均為的正方形重疊在一起,、是其中兩個正方形對角線的交點,則兩個陰影部分面積之和是()A. B. C. D.6.已知Rt△ABC中,∠C=900,AC=2,BC=3,則下列各式中,正確的是()A.; B.; C.; D.以上都不對;7.若關于的一元二次方程有兩個相等的根,則的值為()A. B. C.或 D.或8.用配方法解方程x2+4x+1=0時,方程可變形為()A. B. C. D.9.如圖,拋物線與軸交于點,對稱軸為,則下列結(jié)論中正確的是()A.B.當時,隨的增大而增大C.D.是一元二次方程的一個根10.圖所示,已知二次函數(shù)的圖象正好經(jīng)過坐標原點,對稱軸為直線.給出以下四個結(jié)論:①;②;③;④.正確的有()A.個 B.個 C.個 D.個11.將二次函數(shù)的圖象先向右平移2個單位長度,再向上平移3個單位長度,下列關于平移后所得拋物線的說法,正確的是()A.開口向下 B.經(jīng)過點 C.與軸只有一個交點 D.對稱軸是直線12.如圖,平行于x軸的直線與函數(shù)y1=(a>1,x>1),y2=(b>1.x>1)的圖象分別相交于A、B兩點,且點A在點B的右側(cè),在X軸上取一點C,使得△ABC的面積為3,則a﹣b的值為()A.6 B.﹣6 C.3 D.﹣3二、填空題(每題4分,共24分)13.如圖,四邊形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB上一點,若以P、A、D為頂點的三角形與△PBC相似,則PA=_____cm.14.正六邊形的邊長為6,則該正六邊形的面積是______________.15.已知一個不透明的盒子中裝有3個紅球,2個白球,這些球除顏色外均相同,現(xiàn)從盒中任意摸出1個球,則摸到紅球的概率是________

.16.若將方程x2+6x=7化為(x+m)2=16,則m=______.17.如圖,點A,B,C在⊙O上,CO的延長線交AB于點D,∠A=50°,∠B=30°,則∠ADC的度數(shù)為_____.18.等腰三角形底邊所對的外接圓的圓心角為140°,則其頂角的度數(shù)為______.三、解答題(共78分)19.(8分)嵐山區(qū)地處黃海之濱,漁業(yè)資源豐富,海產(chǎn)品深受消費者喜愛.某海產(chǎn)品批發(fā)超市對進貨價為40元/千克的某品牌小黃魚的銷售情況進行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關系,如圖所示.(1)求y關于x的函數(shù)關系式;(2)若不考慮其它因素,則銷售總利潤=每千克的利潤×總銷量,那么當銷售價格定為多少時,該品牌小黃魚每天的銷售利潤最大?最大利潤是多少?20.(8分)如圖,己知拋物線的圖象與軸的一個交點為另一個交點為,且與軸交于點(1)求直線與拋物線的解析式;(2)若點是拋物線在軸下方圖象上的-一動點,過點作軸交直線于點,當?shù)闹底畲髸r,求的周長.21.(8分)在“陽光體育”活動時間,小英、小麗、小敏、小潔四位同學進行一次羽毛球單打比賽,要從中選出兩位同學打第一場比賽.(1)若已確定小英打第一場,再從其余三位同學中隨機選取一位,求恰好選中小麗同學的概率;(2)用畫樹狀圖或列表的方法,求恰好選中小敏、小潔兩位同學進行比賽的概率.22.(10分)如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長AD到E,且有∠EBD=∠CAB.⑴求證:BE是⊙O的切線;⑵若BC=,AC=5,求圓的直徑AD的長.23.(10分)已知關于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有實數(shù)根,求m的取值范圍.(2)若方程的兩實數(shù)根為x1、x2,且x12+x22=5,求m的值.24.(10分)計算:(1);(2)解方程:.25.(12分)解方程:(1)(公式法)(2)26.如圖,反比例函數(shù)y=(x>0)和一次函數(shù)y=mx+n的圖象過格點(網(wǎng)格線的交點)B、P.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)觀察圖象,直接寫出一次函數(shù)值大于反比例函數(shù)值時x的取值范圍是:.(3)在圖中用直尺和2B鉛筆畫出兩個矩形(不寫畫法),要求每個矩形均需滿足下列兩個條件:①四個頂點均在格點上,且其中兩個頂點分別是點O,點P;②矩形的面積等于k的值.

參考答案一、選擇題(每題4分,共48分)1、B【解題分析】根據(jù)反比例函數(shù)的比例系數(shù)來判斷圖象所在的象限,k>0,位于一、三象限,k<0,位于二、四象限.【題目詳解】解:∵反比例函數(shù)的比例系數(shù)-6<0,∴函數(shù)圖象過二、四象限.故選:B.【題目點撥】本題考查的知識點是反比例函數(shù)的圖象及其性質(zhì),熟記比例系數(shù)與圖象位置的關系是解此題的關鍵.2、A【解題分析】估算無理數(shù)的大小問題可解.【題目詳解】解:由已知0.67,1.5,∵因為,,,>3∴介于與之間故選:A.【題目點撥】本題考查了無理數(shù)大小的估算,解題關鍵是對無理數(shù)大小進行估算.3、D【分析】根據(jù)直線和圓的位置關系來判斷.【題目詳解】設圓心到直線l的距離為d,則d≤10,當d=10時,d=r,直線與圓相切;當r<10時,d<r,直線與圓相交,所以直線與圓相切或相交.故選D點睛:本題考查了直線與圓的位置關系,①直線和圓相離時,d>r;②直線和圓相交時,d<r;③直線和圓相切時,d=r(d為圓心到直線的距離),反之也成立.4、D【分析】根據(jù)頻數(shù),頻率及用頻率估計概率即可得到答案.【題目詳解】A、蓋面朝下的頻數(shù)是55,此項正確;B、蓋面朝下的頻率是=0.55,此項正確;C、蓋面朝下的概率接近于0.55,但不一定是0.55,此項正確;D、同樣的試驗做200次,落地后蓋面朝下的在110次附近,不一定必須有110次,此項錯誤;故選:D.【題目點撥】本題考查了頻數(shù),頻率及用頻率估計概率,掌握知識點是解題關鍵.5、A【分析】連接AN,CN,通過將每部分陰影的面積都轉(zhuǎn)化為正方形ACFE的面積的,則答案可求.【題目詳解】如圖,連接AN,CN∵四邊形ACFE是正方形∴∵,∴∴∴所以四邊形BCDN的面積為正方形ACFE的面積的同理可得另一部分陰影的面積也是正方形ACFE的面積的∴兩部分陰影部分的面積之和為正方形ACFE的面積的即故選A【題目點撥】本題主要考查不規(guī)則圖形的面積,能夠利用全等三角形對面積進行轉(zhuǎn)化是解題的關鍵.6、C【分析】根據(jù)勾股定理求出AB,根據(jù)銳角三角函數(shù)的定義求出各個三角函數(shù)值,即可得出答案.【題目詳解】如圖:

由勾股定理得:AB=,

所以cosB=,sinB=,所以只有選項C正確;

故選:C.【題目點撥】此題考查銳角三角函數(shù)的定義的應用,能熟記銳角三角函數(shù)的定義是解此題的關鍵.7、B【分析】把化為一元二次方程的一般形式,根據(jù)一元二次方程的判別式列方程求出b值即可.【題目詳解】∵,∴x2+(b-1)x=0,∵一元二次方程有兩個相等的根,∴(b-1)2-4×1×0=0,解得:b=1,故選:B.【題目點撥】本題考查一元二次方程根的判別式,對于一元二次方程ax2+bx+c=0(a≠0),根的判別式△=b2-4ac,當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程沒有實數(shù)根.熟練掌握一元二次方程根的判別式是解題關鍵.8、C【解題分析】根據(jù)配方法的定義即可得到答案.【題目詳解】將原式變形可得:x2+4x+4-3=0,即(x+2)2=3,故答案選C.【題目點撥】本題主要考查了配方法解一元二次方程,解本題的要點在于將左邊配成完全平方式,右邊化為常數(shù).9、D【解題分析】根據(jù)二次函數(shù)圖象的開口方向向下可得a是負數(shù),與y軸的交點在正半軸可得c是正數(shù),根據(jù)二次函數(shù)的增減性可得B選項錯誤,根據(jù)拋物線的對稱軸結(jié)合與x軸的一個交點的坐標可以求出與x軸的另一交點坐標,也就是一元二次方程ax2+bx+c=0的根,從而得解.【題目詳解】A、根據(jù)圖象,二次函數(shù)開口方向向下,∴a<0,故本選項錯誤;B、當x>1時,y隨x的增大而減小,故本選項錯誤;C、根據(jù)圖象,拋物線與y軸的交點在正半軸,∴c>0,故本選項錯誤;D、∵拋物線與x軸的一個交點坐標是(?1,0),對稱軸是x=1,設另一交點為(x,0),?1+x=2×1,x=3,∴另一交點坐標是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一個根,故本選項正確.故選:D.【題目點撥】本題主要考查了二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)圖象的增減性,拋物線與x軸的交點問題,熟記二次函數(shù)的性質(zhì)以及函數(shù)圖象與系數(shù)的關系是解題的關鍵.10、C【分析】由拋物線開口方向得到a<0以及函數(shù)經(jīng)過原點即可判斷①;根據(jù)x=-1時的函數(shù)值可以判斷②;由拋物線的對稱軸方程得到為b=3a,用求差法即可判斷③;根據(jù)拋物線與x軸交點個數(shù)得到△=b2-4ac>0,則可對④進行判斷.【題目詳解】∵拋物線開口向下,

∴a<0,

∵拋物線經(jīng)過原點,

∴c=0,

則abc=0,所以①正確;

當x=-1時,函數(shù)值是a-b+c>0,則②正確;

∵拋物線的對稱軸為直線x=-<0,

∴b=3a,

又∵a<0,

∴a-b=-2a>0∴a>b,則③錯誤;

∵拋物線與x軸有2個交點,

∴△=b2-4ac>0,即4ac-b2<0,所以④正確.

故選:C【題目點撥】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.11、C【分析】根據(jù)二次函數(shù)圖象和性質(zhì)以及二次函數(shù)的平移規(guī)律,逐一判斷選項,即可得到答案.【題目詳解】∵二次函數(shù)的圖象先向右平移2個單位長度,再向上平移3個單位長度,∴平移后的二次函數(shù)解析式為:,∵2>0,∴拋物線開口向上,故A錯誤,∵,∴拋物線不經(jīng)過點,故B錯誤,∵拋物線頂點坐標為:(2,0),且開口向上,∴拋物線與軸只有一個交點,故C正確,∵拋物線的對稱軸為:直線x=2,∴D錯誤.故選C.【題目點撥】本題主要考查二次函數(shù)的圖象和性質(zhì)以及平移規(guī)律,掌握“左加右減,上加下減”是解題的關鍵.12、A【分析】△ABC的面積=?AB?yA,先設A、B兩點坐標(其y坐標相同),然后計算相應線段長度,用面積公式即可求解.【題目詳解】設A(,m),B(,m),則:△ABC的面積=?AB?yA=?(﹣)?m=3,則a﹣b=2.故選A.【題目點撥】此題主要考查了反比例函數(shù)系數(shù)的幾何意義,以及圖象上點的特點,求解函數(shù)問題的關鍵是要確定相應點坐標,通過設A、B兩點坐標,表示出相應線段長度即可求解問題.二、填空題(每題4分,共24分)13、2或1【分析】根據(jù)相似三角形的判定與性質(zhì),當若點A,P,D分別與點B,C,P對應,與若點A,P,D分別與點B,P,C對應,分別分析得出AP的長度即可.【題目詳解】解:設AP=xcm.則BP=AB﹣AP=(5﹣x)cm以A,D,P為頂點的三角形與以B,C,P為頂點的三角形相似,①當AD:PB=PA:BC時,,解得x=2或1.②當AD:BC=PA+PB時,,解得x=1,∴當A,D,P為頂點的三角形與以B,C,P為頂點的三角形相似,AP的值為2或1.故答案為2或1.【題目點撥】本題考查了相似三角形的問題,掌握相似三角形的性質(zhì)以及判定定理是解題的關鍵.14、【分析】根據(jù)題意可知邊長為6的正六邊形可以分成六個邊長為6的正三角形,從而計算出正六邊形的面積即可.【題目詳解】解:連接正六變形的中心O和兩個頂點D、E,得到△ODE,因為∠DOE=360°×=60°,又因為OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,則三角形ODE為正三角形,∴OD=OE=DE=6,∴S△ODE=OD?OE?sin60°=×6×6×=9.正六邊形的面積為6×9=54.故答案為.【題目點撥】本題考查學生對正多邊形的概念掌握和計算的能力,即要熟悉正六邊形的性質(zhì),也要熟悉正三角形的面積公式.15、【分析】先求出這個口袋里一共有球的個數(shù),然后用紅球的個數(shù)除以球的總個數(shù)即可.【題目詳解】因為共有5個球,其中紅球由3個,所以從中任意摸出一個球是紅球的概率是,故答案為.【題目點撥】本題考查了概率公式,掌握概率=所求情況數(shù)與總情況數(shù)之比是解題的關鍵.16、3【題目詳解】在方程x2+6x=7的兩邊同時加上一次項系數(shù)的一半的平方,得x2+6x+32=7+32,∴(x+3)2=16∴m=3.17、110°【解題分析】試題分析:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案為110°.考點:圓周角定理.18、70°或110°.【分析】設等腰三角形的底邊為AB,由⊙O的弦AB所對的圓心角為140°,根據(jù)圓周角定理與圓的內(nèi)接四邊形的性質(zhì),即可求得弦AB所對的圓周角的度數(shù),即可求出其頂角的度數(shù).【題目詳解】如圖所示:∵⊙O的弦AB所對的圓心角∠AOB為140°,∴∠ADB=∠AOB=70°,∵四邊形ADBD’是⊙O的內(nèi)接四邊形,∴∠AD′B=180°﹣70°=110°,∴弦AB所對的圓周角為70°或110°,即等腰三角形的頂角度數(shù)為:70°或110°.故答案為:70°或110°.【題目點撥】本題主要考查圓周角定理與圓的內(nèi)接四邊形的性質(zhì),根據(jù)題意畫出圖形,熟悉圓的性質(zhì),是解題的關鍵.三、解答題(共78分)19、(1)y=-2x+140;(2)當該種小黃魚銷售價定為55元/千克時,每天的銷售利潤有最大值1元【分析】(1)直接利用待定系數(shù)法,即可求出一次函數(shù)的解析式;(2)先求出利潤與銷售價格之間的關系式,然后利用二次函數(shù)的最值問題,即可得到答案.【題目詳解】解:(1)由圖象,設函數(shù)解析式為y=kx+b,把(60,20)、(70,0)代入,得解得:k=﹣2,b=140,∴函數(shù)解析式為y=-2x+140;(2)設該品牌小黃魚每千克的售價為x元,總利潤為W元,根據(jù)題意,得當x==55時,W有最大值=1.即當該種小黃魚銷售價定為55元/千克時,每天的銷售利潤有最大值1元.【題目點撥】本題考查了二次函數(shù)的最值問題,二次函數(shù)的性質(zhì),以及一次函數(shù)的性質(zhì),求一次函數(shù)的解析式,解題的關鍵是熟練掌握題意,正確求出關系式,從而進行解題.20、(1),;(2)【分析】(1)直接用待定系數(shù)法求出直線和拋物線解析式;

(2)先求出最大的MN,再求出M,N坐標即可求出周長;【題目詳解】解:(1)設直線的解析式為,將,兩點的坐標代入,得,,所以直線的解析式為;將,兩點的坐標代入,得,,所以拋物線的解析式為;(2)如圖1,設,,則,,當時,有最大值4;取得最大值時,,,即.,即,,可得,,的周長.【題目點撥】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,函數(shù)的極值,三角形的周長,三角形的面積,方程組的求解,解本題的關鍵是建立的函數(shù)關系式.21、(1);(2).【分析】(1)由題意直接利用概率公式求解即可求得答案;(2)根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與恰好選中小敏、小潔兩位同學的情況,再利用概率公式求解即可求得答案.【題目詳解】解:(1)若已確定小英打第一場,再從其余三位同學中隨機選取一位,共有3種情況,而選中小麗的情況只有一種,所以P(恰好選中小麗)=;(2)列表如下:所有可能出現(xiàn)的情況有12種,其中恰好選中小敏、小潔兩位同學組合的情況有兩種,所以P(小敏,小潔)==.【題目點撥】本題考查列表法與樹狀圖法.22、(1)詳見解析;(2)1【分析】(1)先根據(jù)等弦所對的劣弧相等,再結(jié)合∠EBD=∠CAB從而得到∠BAD=∠EBD,最后用直徑所對的圓周角為直角即可;

(2)利用三角形的中位線先求出OM,再用勾股定理求出半徑r,最后得到直徑的長.【題目詳解】解:⑴證明:連接OB,CD,OB、CD交于點M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直徑,∴∠ABD=∠ACD=90°,又∠EBD=∠CAB,∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半徑,∴BE是⊙O的切線.⑵∵OB∥AC,OA=OD,AC=5,.∴OM=2.5,BM=OB-2.5,OB⊥CD設⊙O的半徑為r,則在Rt△OMD中:MD2=r2-2.52;在Rt△BMD中:MD2=BD2-(r-2.5)2,BD=BC=.∴r1=3,r2=-0.5(舍).∴圓的直徑AD的長是1.【題目點撥】此題是切線的判定,主要考查了圓周角的性質(zhì),切線的判定,勾股定理等,解本題的關鍵是作出輔助線.23、(1)m≥;(2)m=3【分析】(1)根據(jù)判別式即可求出答案;(2)根據(jù)根與系數(shù)的關系即可求出答案.【題目詳解】解:(1)當m﹣2≠0時,△=1+8(m﹣2)≥0,∴m≥且m≠2,當m﹣2=0時,x﹣2=0,符合題意,綜上所述,m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論