版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣西北部灣九年級數(shù)學第一學期期末質量跟蹤監(jiān)視試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你認為其中正確信息的個數(shù)有A.2個 B.3個 C.4個 D.5個2.圓心角為140°的扇形的半徑為3cm,則這個扇形的面積是()cm1.A.π B.3π C.9π D.6π3.已知反比例函數(shù)y=,則下列點中在這個反比例函數(shù)圖象上的是()A.(1,2) B.(1,﹣2) C.(2,2) D.(2,l)4.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個5.如圖,AB是⊙O的直徑,點C,D在直徑AB一側的圓上(異于A,B兩點),點E在直徑AB另一側的圓上,若∠E=42°,∠A=60°,則∠B=()A.62° B.70° C.72° D.74°6.已知函數(shù)的圖象如圖所示,則一元二次方程根的存在情況是A.沒有實數(shù)根 B.有兩個相等的實數(shù)根C.有兩個不相等的實數(shù)根 D.無法確定7.下列條件中,能判斷四邊形是菱形的是()A.對角線互相垂直且相等的四邊形B.對角線互相垂直的四邊形C.對角線相等的平行四邊形D.對角線互相平分且垂直的四邊形8.某種工件是由一個長方體鋼塊中間鉆了一個上下通透的圓孔制作而成,其俯視圖如圖所示,則此工件的左視圖是(
)A. B. C. D.9.已知點P(a+1,)關于原點的對稱點在第四象限,則a的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.10.如圖,A,B,C,D四個點均在⊙O上,∠AOB=40°,弦BC的長等于半徑,則∠ADC的度數(shù)等于()A.50° B.49° C.48° D.47°二、填空題(每小題3分,共24分)11.已知x-2y=3,試求9-4x+8y=_______12.計算:=______.13.如圖,拋物線y=﹣x2﹣2x+3與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1關于點B的中心對稱得C2,C2與x軸交于另一點C,將C2關于點C的中心對稱得C3,連接C1與C3的頂點,則圖中陰影部分的面積為.14.如圖,一組等距的平行線,點A、B、C分別在直線l1、l6、l4上,AB交l3于點D,AC交l3于點E,BC交于l5點F,若△DEF的面積為1,則△ABC的面積為_____.15.從實數(shù)中,任取兩個數(shù),正好都是無理數(shù)的概率為________.16.如圖,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于點D,O是BC上一點,經(jīng)過C、D兩點的⊙O分別交AC、BC于點E、F,AD=,∠ADC=60°,則劣弧的長為_____.17.等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關于x的一元二次方程x2﹣12x+k=0的兩個根,則k的值是________.18.已知直線:交x軸于點A,交y軸于點B;直線:經(jīng)過點B,交x軸于點C,過點D(0,-1)的直線分別交、于點E、F,若△BDE與△BDF的面積相等,則k=____.三、解答題(共66分)19.(10分)定義:若函數(shù)與軸的交點的橫坐標為,,與軸交點的縱坐標為,若,中至少存在一個值,滿足(或),則稱該函數(shù)為友好函數(shù).如圖,函數(shù)與軸的一個交點的橫坐標為-3,與軸交點的縱坐標為-3,滿足,稱為友好函數(shù).(1)判斷是否為友好函數(shù),并說明理由;(2)請?zhí)骄坑押煤瘮?shù)表達式中的與之間的關系;(3)若是友好函數(shù),且為銳角,求的取值范圍.20.(6分)如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.(1)求拋物線的函數(shù)關系式;(2)設點P是直線l上的一個動點,當點P到點A、點B的距離之和最短時,求點P的坐標;(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標.21.(6分)如圖,已知AB經(jīng)過圓心O,交⊙O于點C.(1)尺規(guī)作圖:在AB上方的圓弧上找一點D,使得△ABD是以AB為底邊的等腰三角形(保留作圖痕跡);(2)在(1)的條件下,若∠DAB=30°,求證:直線BD與⊙O相切.22.(8分)小明和小亮玩一個游戲:三張大小、質地都相同的卡片上分別標有數(shù)字2,3,4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.(2)你認為這個游戲規(guī)則對雙方公平嗎?說說你的理由.23.(8分)某商場銷售一批名牌襯衫,平均每天可售出10件,每件盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出1件,若商場平均每天要盈利600元,每件襯衫應降價多少元?24.(8分)某果園有100棵桃樹,一棵桃樹平均結1000個桃子,現(xiàn)準備多種一些桃樹以提高產(chǎn)量,試驗發(fā)現(xiàn),每多種一棵桃樹,每棵樹的產(chǎn)量就會減少2個,但多種的桃樹不能超過100棵,如果要使產(chǎn)量增加15.2%,那么應多種多少棵桃樹?25.(10分)蓄電池的電壓為定值,使用此電源時,電流I(A)是電阻R(Ω)的反比例函數(shù),其圖象如圖所示.(1)求這個反比例函數(shù)的表達式;(2)當R=10Ω時,求電流I(A).26.(10分)已知函數(shù)解析式為y=(m-2)(1)若函數(shù)為正比例函數(shù),試說明函數(shù)y隨x增大而減?。?)若函數(shù)為二次函數(shù),寫出函數(shù)解析式,并寫出開口方向(3)若函數(shù)為反比例函數(shù),寫出函數(shù)解析式,并說明函數(shù)在第幾象限
參考答案一、選擇題(每小題3分,共30分)1、D【解題分析】試題分析:①如圖,∵拋物線開口方向向下,∴a<1.∵對稱軸x,∴<1.∴ab>1.故①正確.②如圖,當x=1時,y<1,即a+b+c<1.故②正確.③如圖,當x=﹣1時,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正確.④如圖,當x=﹣1時,y>1,即a﹣b+c>1,∵拋物線與y軸交于正半軸,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正確.⑤如圖,對稱軸,則.故⑤正確.綜上所述,正確的結論是①②③④⑤,共5個.故選D.2、D【解題分析】試題分析:扇形面積的計算公式為:,故選擇D.3、A【分析】根據(jù)y=得k=x2y=2,所以只要點的橫坐標的平方與縱坐標的積等于2,就在函數(shù)圖象上.【題目詳解】解:A、12×2=2,故在函數(shù)圖象上;B、12×(﹣2)=﹣2≠2,故不在函數(shù)圖象上;C、22×2=8≠2,故不在函數(shù)圖象上;D、22×1=4≠2,故不在函數(shù)圖象上.故選A.【題目點撥】本題主要考查反比例函數(shù)圖象上點的坐標特征,所有反比例函數(shù)圖象上的點的坐標適合解析式.4、B【解題分析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.5、C【分析】連接AC.根據(jù)圓周角定理求出∠CAB即可解決問題.【題目詳解】解:連接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直徑,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故選:C.【題目點撥】本題主要考察圓周角定理,解題關鍵是連接AC.利用圓周角定理求出∠CAB.6、C【題目詳解】試題分析:一次函數(shù)的圖象有四種情況:①當,時,函數(shù)的圖象經(jīng)過第一、二、三象限;②當,時,函數(shù)的圖象經(jīng)過第一、三、四象限;③當,時,函數(shù)的圖象經(jīng)過第一、二、四象限;④當,時,函數(shù)的圖象經(jīng)過第二、三、四象限.由圖象可知,函數(shù)的圖象經(jīng)過第二、三、四象限,所以,.根據(jù)一元二次方程根的判別式,方程根的判別式為,當時,,∴方程有兩個不相等的實數(shù)根.故選C.7、D【解題分析】利用菱形的判定方法對各個選項一一進行判斷即可.【題目詳解】解:A、對角線互相垂直相等的四邊形不一定是菱形,此選項錯誤;B、對角線互相垂直的四邊形不一定是菱形,此選項錯誤;C、對角線相等的平行四邊形也可能是矩形,此選項錯誤;D、對角線互相平分且垂直的四邊形是菱形,此選項正確;故選:D.【題目點撥】本題考查了菱形的判定,平行四邊形的性質,熟練運用這些性質是本題的關鍵.8、A【解題分析】從左面看應是一長方形,看不到的應用虛線,由俯視圖可知,虛線離邊較近,故選A.9、C【解題分析】試題分析:∵P(,)關于原點對稱的點在第四象限,∴P點在第二象限,∴,,解得:,則a的取值范圍在數(shù)軸上表示正確的是.故選C.考點:1.在數(shù)軸上表示不等式的解集;2.解一元一次不等式組;3.關于原點對稱的點的坐標.10、A【解題分析】連接OC,根據(jù)等邊三角形的性質得到∠BOC=60°,得到∠AOC=100°,根據(jù)圓周角定理解答.【題目詳解】連接OC,由題意得,OB=OC=BC,∴△OBC是等邊三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圓周角定理得,∠ADC=12∠AOC=50°故選:A.【題目點撥】本題考查的是圓周角定理,等邊三角形的判定和性質,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.二、填空題(每小題3分,共24分)11、-3【分析】將代數(shù)式變形為9-4(x-2y),再代入已知值可得.【題目詳解】因為x-2y=3,所以9-4x+8y=9-4(x-2y)=9-4×3=-3故答案為:-3【題目點撥】考核知識點:求整式的值.利用整體代入法是解題的關鍵.12、【分析】直接利用平面向量的加減運算法則求解即可求得,注意去括號時符號的變化.【題目詳解】解:==故答案為:.【題目點撥】此題考查了平面向量的運算.此題難度不大,注意掌握運算法則是解此題的關鍵.13、1【分析】將x軸下方的陰影部分沿對稱軸分成兩部分補到x軸上方,即可將不規(guī)則圖形轉換為規(guī)則的長方形,則可求出.【題目詳解】∵拋物線與軸交于點、,∴當時,則,解得或,則,的坐標分別為(-3,0),(1,0),∴的長度為4,從,兩個部分頂點分別向下作垂線交軸于、兩點.根據(jù)中心對稱的性質,軸下方部分可以沿對稱軸平均分成兩部分補到與,如圖所示,陰影部分轉化為矩形,根據(jù)對稱性,可得,則,利用配方法可得,則頂點坐標為(-1,4),即陰影部分的高為4,.故答案為:1.【題目點撥】本題考查了中心對稱的性質、配方法求拋物線的頂點坐標及求拋物線與x軸交點坐標,解題關鍵是將不規(guī)則圖形通過對稱轉換為規(guī)則圖形,求陰影面積經(jīng)常要使用轉化的數(shù)學思想.14、【分析】在三角形中由同底等高,同底倍高求出,根據(jù)平行線分線段成比例定理,求出,最后由三角形的面積的和差法求得.【題目詳解】連接DC,設平行線間的距離為h,AD=2a,如圖所示:∵,,∴S△DEF=S△DEA,又∵S△DEF=1,∴S△DEA=1,同理可得:,又∵S△ADC=S△ADE+S△DEC,∴,又∵平行線是一組等距的,AD=2a,∴,∴BD=3a,設C到AB的距離為k,∴ak,,∴,又∵S△ABC=S△ADC+S△BDC,∴.故答案為:.【題目點撥】本題綜合考查了平行線分線段成比例定理,平行線間的距離相等,三角形的面積求法等知識,重點掌握平行線分線段成比例定理,難點是作輔助線求三角形的面積.15、【分析】畫樹狀圖展示所有等可能的結果數(shù),再找出兩次選到的數(shù)都是無理數(shù)的結果數(shù),然后根據(jù)概率公式求解.【題目詳解】畫樹狀圖為:則共有6種等可能的結果,其中兩次選到的數(shù)都是無理數(shù)有()和()2種,所以兩次選到的數(shù)都是無理數(shù)的概率.故答案為:.【題目點撥】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.16、【分析】連接DF,OD,根據(jù)圓周角定理得到∠CDF=90°,根據(jù)三角形的內(nèi)角和得到∠COD=120°,根據(jù)三角函數(shù)的定義得到CF==4,根據(jù)弧長公式即可得到結論.【題目詳解】解:如圖,連接DF,OD,∵CF是⊙O的直徑,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于點D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半徑=2,∴劣弧的長==π,故答案為π.【題目點撥】本題考查了圓周角定理,解直角三角形,弧長的計算,作出輔助線構建直角三角形是本題的關鍵.17、32【解題分析】分3為等腰三角形的腰與3為等腰三角形的底兩種情況考慮.①當3為等腰三角形的腰時,將x=3代入原方程可求出k的值,再利用分解因式法解一元二次方程可求出等腰三角形的底,由三角形的三邊關系可確定此情況不存在;②當3為等腰三角形的底時,由方程的系數(shù)結合根的判別式可得出△=144﹣4k=0,解之即可得出k值,進而可求出方程的解,再利用三角形的三邊關系確定此種情況符合題意.此題得解.【題目詳解】①當3為等腰三角形的腰時,將x=3代入原方程得1﹣12×3+k=0,解得:k=27,此時原方程為x2﹣12x+27=0,即(x﹣3)(x﹣1)=0,解得:x1=3,x2=1.∵3+3=2<1,∴3不能為等腰三角形的腰;②當3為等腰三角形的底時,方程x2﹣12x+k=0有兩個相等的實數(shù)根,∴△=(﹣12)2﹣4k=144﹣4k=0,解得:k=32,此時x1=x22.∵3、2、2可以圍成等腰三角形,∴k=32.故答案為32.【題目點撥】本題考查了解一元二次方程-因式分解法、根的判別式、三角形的三邊關系以及等腰三角形的性質,分3為等腰三角形的腰與3為等腰三角形的底兩種情況考慮是解題的關鍵.18、【分析】先利用一次函數(shù)圖像相關求出A、B、C的坐標,再根據(jù)△BDE與△BDF的面積相等,得到點E、F的橫坐標相等,從而進行分析即可.【題目詳解】解:由直線:交x軸于點A,交y軸于點B;直線:經(jīng)過點B,交x軸于點C,求出A、B、C的坐標分別為,將點D(0,-1)代入得到,又△BDE與△BDF的面積相等,即知點E、F的橫坐標相等,且直線分別交、于點E、F,可知點E、F為關于原點對稱,即知坡度為45°,斜率為.故k=.【題目點撥】本題考查一次函數(shù)圖像性質與幾何圖形的綜合問題,熟練掌握一次函數(shù)圖像性質以及等面積三角形等底等高的概念進行分析是解題關鍵.三、解答題(共66分)19、(1)是,理由見解析;(2);(1)或,且【分析】(1)根據(jù)友好函數(shù)的定義,求出函數(shù)與x軸交點的橫坐標以及與y軸交點的縱坐標,即可進行判斷;(2)先求出函數(shù)與y軸交點的縱坐標為c,再根據(jù)定義,可得當x=c時,y=0,據(jù)此可得出結果;(1)分一下三種情況求解:(ⅰ)當在軸負半軸上時,由(2)可得:,進而可得出結果;(ⅱ)當在軸正半軸上時,且與不重合時,畫出圖像可得出結果;(ⅲ)當與原點重合時,不符合題意.【題目詳解】解:(1)是友好函數(shù).理由如下:當時,;當時,或1,∴與軸一個交點的橫坐標和與軸交點的縱坐標都是1.故是友好函數(shù).(2)當時,,即與軸交點的縱坐標為.∵是友好函數(shù).∴時,,即在上.代入得:,而,∴.(1)(?。┊斣谳S負半軸上時,由(2)可得:,即,顯然當時,,即與軸的一個交點為.則,∴只需滿足,即.∴.(ⅱ)當在軸正半軸上時,且與不重合時,∴顯然都滿足為銳角.∴,且.(ⅲ)當與原點重合時,不符合題意.綜上所述,或,且.【題目點撥】本題主要考查二次函數(shù)的新定義問題以及二次函數(shù)與坐標軸的交點問題,解題的關鍵是理解題意.20、(1);(2)P(1,0);(3)M(1,)(1,)(1,﹣1)(1,0).【分析】(1)直接將A、B、C三點坐標代入拋物線的解析式中求出待定系數(shù)即可;(2)由圖知:A.B點關于拋物線的對稱軸對稱,那么根據(jù)拋物線的對稱性以及兩點之間線段最短可知,直線l與x軸的交點,即為符合條件的P點;(3)由于△MAC的腰和底沒有明確,因此要分三種情況來討論:①MA=AC、②MA=MC、③AC=MC;可先設出M點的坐標,然后用M點縱坐標表示△MAC的三邊長,再按上面的三種情況列式求解.【題目詳解】解:(1)將A(﹣1,0)、B(3,0)、C(0,﹣3)代入拋物線中,得:,解得:,故拋物線的解析式:.(2)當P點在x軸上,P,A,B三點在一條直線上時,點P到點A、點B的距離之和最短,此時x==1,故P(1,0);(3)如圖所示:拋物線的對稱軸為:x==1,設M(1,m),已知A(﹣1,0)、C(0,﹣3),則:=,==,=10;①若MA=MC,則,得:=,解得:m=﹣1;②若MA=AC,則,得:=10,得:m=;③若MC=AC,則,得:=10,得:,;當m=﹣6時,M、A、C三點共線,構不成三角形,不合題意,故舍去;綜上可知,符合條件的M點,且坐標為M(1,)(1,)(1,﹣1)(1,0).考點:二次函數(shù)綜合題;分類討論;綜合題;動點型.21、(1)作圖見解析;(2)證明見解析.【分析】(1)作線段AB的垂直一部分線,交AB上方的圓弧上于點D,連接AD,BD,等腰三角形ABD即為所求作;(2)由等腰三角形的性質可求出∠B=30゜,連接OD,利用三角形外角的性質得∠DOB=60゜,再由三角形內(nèi)角和求得∠ODB=90゜,從而可證得結論.【題目詳解】(1)如圖所示;(2)∵△ABD是等腰三角形,且∠DAB=30°,∴∠DBA=30゜,連接OD,∵OA=OD∴∠ODA=∠OAD=30゜∴∠DOB=∠ODA+∠OAD=60゜在△ODB中,∠DOB+∠ODB+∠DBO=180゜∴∠ODB=180゜-∠DOB-∠DBO=90゜,即∴直線BD與⊙O相切.【題目點撥】本題考查的是切線的判定,掌握“連交點,證垂直”是解決這類問題的常用解題思路.22、(1);(2)這個游戲規(guī)則對雙方是不公平的.【分析】(1)首先根據(jù)題意列表,然后根據(jù)表求得所有等可能的結果與兩數(shù)和為6的情況,再利用概率公式求解即可;
(2)分別求出和為奇數(shù)、和為偶數(shù)的概率,即可得出游戲的公平性.【題目詳解】(1)列表如下:小亮和小明23422+2=42+3=52+4=633+2=53+3=63+4=744+2=64+3=74+4=8由表可知,總共有9種結果,其中和為6的有3種,則這兩數(shù)和為6的概率=;(2)這個游戲規(guī)則對雙方不公平.理由:因為P(和為奇數(shù))=,P(和為偶數(shù))=,而≠,所以這個游戲規(guī)則對雙方是不公平的.【題目點撥】此題考查了列表法求概率.注意樹狀圖與列表法可以不重不漏的表示出所有等可能的情況.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、平均每天要盈利600元,每件襯衫應降價20元【解題分析】試題分析:本題考查一元二次方程解決商品銷售問題,設每件襯衫應降價x,則每件的盈利為(40-x),每天可以售出的數(shù)量為(10+x),由題意得:(40-x)(10+x)=600,解得=10,=20,由于為了擴大銷售量,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆銀川市重點中學高三英語第一學期期末達標測試試題含解析
- 票據(jù)管理制度適用范圍(3篇)
- 藥品紙箱管理制度范本(3篇)
- 設計工時管理制度范本(3篇)
- 輔材配件管理制度范本(3篇)
- 野生種質資源圃管理制度(3篇)
- 防疫臨時駐場人員管理制度(3篇)
- 食品品質責任管理制度內(nèi)容(3篇)
- 疾病預防與安全應急 溺水的預防與急救 課件2025-2026學年人教版初中+體育與健康七年級全一冊
- 中學學生社團財務管理制度
- 2026年藥店培訓計劃試題及答案
- 2026春招:中國煙草真題及答案
- 六年級寒假家長會課件
- 物流鐵路專用線工程節(jié)能評估報告
- 2026河南省氣象部門招聘應屆高校畢業(yè)生14人(第2號)參考題庫附答案
- 2026天津市南開區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位60人(含高層次人才)備考核心試題附答案解析
- 2025江蘇無錫市宜興市部分機關事業(yè)單位招聘編外人員40人(A類)備考筆試試題及答案解析
- 卵巢過度刺激征課件
- 漢服行業(yè)市場壁壘分析報告
- 重瞼手術知情同意書
- 2026華潤燃氣校園招聘(公共基礎知識)綜合能力測試題附答案解析
評論
0/150
提交評論