帕坦卡 傳熱數(shù)值計(jì)算 ppt_第1頁
帕坦卡 傳熱數(shù)值計(jì)算 ppt_第2頁
帕坦卡 傳熱數(shù)值計(jì)算 ppt_第3頁
帕坦卡 傳熱數(shù)值計(jì)算 ppt_第4頁
帕坦卡 傳熱數(shù)值計(jì)算 ppt_第5頁
已閱讀5頁,還剩85頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

ComputationalfluiddynamicswithheatandmasstransferE4465FundamentalsoftransferprocessesConservationofmassConservationofmomentumConservationofenergyConservationofchargep-v-trelationsturbulenceboundarylayerapproximationsNumericaltechniquesfortransferprocessesDiscretizationmethodsfor:conductionconvectivediffusionBasicequationsGridNonlinearityBoundaryconditionsTransientsRelaxationCalculationofthe:flowfieldtemperaturedistributionconcentrationfieldVehicle-CFDComputationalFluidDynamics(CFD)isadisciplinethatsolvesasetofequationsgoverningthefluidflowoveranygeometricalconfiguration.Theequationscanrepresentsteadyorunsteady,compressibleorincompressible,andinviscidorviscousflows,includingnonidealandreactingfluidbehavior.Theparticularformchosendependsontheintendedapplication.Thestateoftheartischaracterizedbythecomplexityofthegeometry,theflowphysics,andthecomputertimerequiredtoobtainasolution.ApplicationsinPowerIndustryHeatfluxdistributioninaboilerHeattransferandpressurelossinaheatexchangerFlow,heattransferanderosioninacondenserPerformanceofagasturbinecombustionchamberandflowthroughagasturbinetestcellFlowthroughahighpressuresteamturbinevalveHazardanalysisVariousapplicationsAnimationshowingtheeffectsofbicycledrafting.,datacourtesyFluentInc.Hypervelocityimpactstudyforthespaceshuttle.DatacourtesyNASAJohnson.Animationofamodelofsubmarine.CourtesyFLUENT/UNSfromFluent,Inc.Simulationofaracingyachtkeeldesign.CourtesySiliconGraphics.CarsFourviewsofcylinderintakeflow.DatacourtesyFordMotorCo.Sideandtopviewsoffuelsprayinadieselengine.Sequencefromacarinawindtunnelanimation.DatacourtesyFluent,Inc.Animationofflowoveracarinawindtunnel.DatacourtesyFordMotorCo.Twoviewsofacarcrash.CivilandEnvironmentalEnvironmentalImpactAssessment

FloodAnalysisandDamBreachSimulationHydro-PowerSystemsWind

Interaction

with

Structures

PollutantDispersalandAirQuality

FireandSmokeSpread

HeatingandAirConditioning

WasteWaterTreatmentandWaterQuality

OilandGasFluidsloshingintankers

DrillingoperationsandequipmentsimulationFluidflowaroundplatforms

WindandwaveloadingonstructuresFireriskandhazardanalysis

Industrialseparationprocesses

TransportationAerodynamicsofAirplanesandtrainsCarsandtrucksMotorcyclesHydrodynamicsofshipsandsubmarinesDesignofcarcomponentsexhaustvalveModelingofsupersonic/hypersonicflowPassengersafetyanalysis

FuelsloshinganalysisOtherapplicationsFlowthroughporousmediaMixingvesseldesignCyclonedesignMetalcastingTurbinebladedesignPolymerizationreactorvesseldesignCoatingprocessesInkjetdesignCoolingofelectroniccomponentsNumericalTransferProcessesE4386MethodsofpredictionExperimentalinvestigation:fullscaleexpensiveandoftenimpossiblemeasurementerrorsonasmallscalemodelsimplifieddifficulttoextrapolateresultsmeasurementerrorsTheoreticalcalculation:analyticalsolutionsexistonlyforafewcasessometimescomplexnumericalsolutionsforalmostanyproblemModelingvs.experimentationAdvantagesofmodeling:cheapermorecompleteinformationcanhandleanydegreeofcomplexityaslongas…Disadvantagesofmodeling:dealswithamathematicaldescriptionnotwithrealitymathematicaldescriptioncanbeinadequatemultiplesolutionscanexist…andthewinneris…Conservationprincipleleadstoageneraldifferentialequation:MathematicaldescriptionoftransferprocessesNatureofcoordinateswithrespecttoxj:1D,2D,3Dwithrespecttot:steadyunsteady

(transient,timedependent)one-waycoordinates=>parabolicproblemtwo-waycoordinates=>

ellipticproblemDiscretizationmethodsanalyticalsolutiongivesafunction(continuous)numericalsolutiongivesasetofnumbers(discrete)TxExample:steady1DheatconductionxSIntegrationPWExweDx(dx)w(dx)eDiscretizationTxPWEweTpTwTEDiscretizationequationconductancesheatgenerationSourcetermlinearizationGuidingprinciplesSolutionshouldalwaysbephysicallyrealisticOverallbalanceoffluxesmustbemaintainedxTexactapproximate,butphysicallyrealisticunrealisticFourbasicrulesRule1.Fluxconsistencyat controlvolumefaces“whenafaceiscommontotwoadjacentcontrolvolumes,thefluxacrossitmustberepresentedbythesameexpressioninthediscretizationequationsforthetwocontrolvolumes”Rule2.Positivecoefficients“allcoefficientsamustalwaysbepositive”FourbasicrulesRule3.Negativeslope linearizationofthe sourceterm“WhenthesourcetermislinearizedasS=SC+SPTP,thecoefficientSPmustalwaysbelessthanorequaltozero.”Rule4.Sumoftheneighbour coefficients“itisrequiredthataP=

anb

forsituationswherethedifferentialequationcontinuestoremainsatisfiedafteraconstantisaddedtothedependentvariable”exampleBackto:steady

1DheatconductionBackto:steady

1DheatconductionPWExweDx(dx)w(dx)eDiscretizationTxPWEweTpTwTEDiscretizationequationconductancesheatgenerationSourcetermlinearizationforexamplewhenS=f(T)Nonlinearityforexamplewhenk=f(T)theanswerisiterationInterpolationof

interfacialconductivityPExwe(dx)e(dx)e+(dx)e-Firstguess:Interpolationof

interfacialconductivityrememberallweneedisthefluxInterpolationof

interfacialconductivityrememberthefirstguess:for:whichoneiscorrect?GridspacingUniformeasytoset-upcomputationallyexpensiveNon-uniformhardertoset-upneedsiterationcomputationallyeconomicalBlockgrids?Multi-grids?Boundaryconditions1.Givenboundarytemperaturesimple2.Givenboundaryheatflux a)asaconstantb)specifiedviaa

heattransfercoefficientandthetemperatureofthesurroundingfluidBoundaryconditionsPWEIBiIBDx(dx)iiqBqiSBoundaryconditionsIBDx(dx)iiqBqiSBoundaryconditionsifqBspecifiedasaconstantthen:BoundaryconditionsifqBspecifiedviaa

heattransferhcoefficientandthetemperatureofthesurroundingfluidTf:SolutionofthelinearalgebraicequationsPossibilitiesIterationGaussianeliminationTri-Diagonal-Matrix-AlgorithmTDMAPWE1i-1ii+1NchangeofnotationTDMAPWE1i-1ii+1Nwhathappenswhenaboundarytemperatureisgiven?TDMAPWE1i-1ii+1NTDMAPWE1i-1ii+1NTDMAalgorithmCalculate:

P1=b1/a1andQ1=d1/a1

UserecurrencerelationstogetPiandQifori=2,3…N.SetTN=QNUserecurrencerelationstoget

Ti=PiTi+1+Qifori=N-1,N-2…3,2,1

toobtain TN-1,TN-2,…T3,T2,T1.Unsteady1Dheatconductionsteady:unsteady:(transient)PWExweDx(dx)w(dx)etIntegrationTxPWEweTpTwTEintegratewithrespecttox:integratewithrespecttot:TimeintegrationrepeatforpointsEandW:tTExplicitvsimplicitf=0 explicitschemef=0.5 semi-implicit(Crank- Nicolson)schemef=1 fullyimplicitschemeTpoldtTpnewt+Dtf=0f=1f=0.5Explicitschemefor:inordertogiverealisticsolutionsCrank-NicolsonschemecangiveunrealisticsolutionsImplicitschemealwaysgivesrealisticsolutionsUnsteady2-Dheatconductionxyz=1PWEweDxNSnsDyDiscretizedunsteady2-DheatconductionequationUnsteady3-DheatconductionequationDiscretizedunsteady3-DheatconductionequationSolutionoftheequationsdirectmethodGauss-Seidelmethodline-by-linemethodalternating-directionimplicitstronglyimplicitprocedureRelaxationoverrelaxationunderrelaxationRelaxationrelaxationthroughinertia:Convectionanddiffusionassumeaknownflowfieldgeneralize Tandkas

FandGcontinuityandmomentumequations:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論