2024屆河北省唐山市遵化一中高二上數(shù)學期末綜合測試試題含解析_第1頁
2024屆河北省唐山市遵化一中高二上數(shù)學期末綜合測試試題含解析_第2頁
2024屆河北省唐山市遵化一中高二上數(shù)學期末綜合測試試題含解析_第3頁
2024屆河北省唐山市遵化一中高二上數(shù)學期末綜合測試試題含解析_第4頁
2024屆河北省唐山市遵化一中高二上數(shù)學期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆河北省唐山市遵化一中高二上數(shù)學期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,拋物線上的兩點,均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.2.已知正三棱柱中,,點為中點,則異面直線與所成角的余弦值為()A. B.C. D.3.設(shè)實系數(shù)一元二次方程在復(fù)數(shù)集C內(nèi)的根為、,則由,可得.類比上述方法:設(shè)實系數(shù)一元三次方程在復(fù)數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.44.下列關(guān)于拋物線的圖象描述正確的是()A.開口向上,焦點為 B.開口向右,焦點為C.開口向上,焦點為 D.開口向右,焦點為5.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.166.我們知道,償還銀行貸款時,“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個月還一次款,20年還清,貸款月利率為,設(shè)張華第個月的還款金額為元,則()A.2192 B.C. D.7.已知命題:,;命題:在中,若,則,則下列命題為真命題的是()A. B.C. D.8.是數(shù)列,,,-17,中的第幾項()A第項 B.第項C.第項 D.第項9.如果一個矩形長與寬的比值為,那么稱該矩形為黃金矩形.如圖,已知是黃金矩形,,分別在邊,上,且也是黃金矩形.若在矩形內(nèi)任取一點,則該點取自黃金矩形內(nèi)的概率為()A. B.C. D.10.在圓內(nèi),過點的最長弦和最短弦分別是AC和BD,則四邊形ABCD的面積為()A. B.C. D.11.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標為3,則該拋物線的準線方程為()A. B.C. D.12.若直線與圓只有一個公共點,則m的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓:的長軸長為4,焦距為2,則橢圓的標準方程為______.14.等比數(shù)列的各項均為正數(shù),且,則__________.15.設(shè)函數(shù),則___________.16.若曲線在點處的切線斜率為,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)命題對于任意,不等式恒成立.命題實數(shù)a滿足(1)若命題p為真,求實數(shù)a的取值范圍;(2)若“p或q”為真,“p且q”為假,求實數(shù)a的取值范圍18.(12分)分別求滿足下列條件的曲線方程(1)以橢圓的短軸頂點為焦點,且離心率為的橢圓方程;(2)過點,且漸近線方程為的雙曲線的標準方程19.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若,證明:20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,當時,恒成立,求實數(shù)的取值范圍.21.(12分)已知拋物線上一點到焦點的距離與到軸的距離相等.(1)求拋物線的方程;(2)若直線與拋物線交于A,兩點,且滿足(為坐標原點),證明:直線與軸的交點為定點.22.(10分)已知,:,:.(1)若,為真命題,為假命題,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】作垂直準線于,垂直準線于,作于,結(jié)合拋物線定義得出斜率為可求.【詳解】如圖:作垂直準線于,垂直準線于,作于,因為,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.2、A【解析】根據(jù)異面直線所成角的定義,取中點為,則為異面直線和所成角或其補角,再解三角形即可求出【詳解】如圖所示:設(shè)中點為,則在三角形中,為中點,為中位線,所以有,,所以為異面直線和所成角或其補角,在三角形中,,所以由余弦定理有,故選:A.3、A【解析】用類比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對應(yīng)系數(shù)相等得:,.故選:A.【點睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.4、A【解析】把化成拋物線標準方程,依據(jù)拋物線幾何性質(zhì)看開口方向,求其焦點坐標即可解決.【詳解】,即.則,即故此拋物線開口向上,焦點為故選:A5、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當且僅當時取等.故選:B.6、D【解析】計算出每月應(yīng)還的本金數(shù),再計算第n個月已還多少本金,由此可計算出個月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個月的還款金額為元,則,故選:D7、C【解析】分別求得的真假性,從而確定正確答案.【詳解】對于,由于,所以為假命題,為真命題.對于,在三角形中,,由正弦定理得,所以為真命題,為假命題.所以為真命題,、、為假命題.故選:C8、C【解析】利用等差數(shù)列的通項公式即可求解【詳解】設(shè)數(shù)列,,,,是首項為,公差d=-4的等差數(shù)列{},,令,得故選:C9、B【解析】由幾何概型的面積型,只需求小矩形的面積和大矩形面積之比.【詳解】由題意,不妨設(shè),則,又也是黃金矩形,則,又,解得,于是大矩形面積為:,小矩形的面積為,由幾何概型的面積型,概率為若在矩形內(nèi)任取一點,則該點取自黃金矩形內(nèi)的概率為:.故選:B.10、D【解析】由題,求得圓的圓心和半徑,易知最長弦,最短弦為過點與垂直的弦,再求得BD的長,可得面積.【詳解】圓化簡為可得圓心為易知過點的最長弦為直徑,即而最短弦為過與垂直的弦,圓心到的距離:所以弦所以四邊形ABCD的面積:故選:D11、B【解析】設(shè),進而根據(jù)題意,結(jié)合中點弦的問題得,進而再求解準線方程即可.【詳解】解:根據(jù)題意,設(shè),所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標為3,所以,即,所以拋物線,準線方程為.故選:B12、D【解析】利用圓心到直線的距離等于半徑列方程,化簡求得的值.【詳解】圓的圓心為,半徑為,直線與圓只有一個公共點,所以直線與圓相切,所以.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由焦距可得c,長軸長得到a,再根據(jù)可得答案.【詳解】因為橢圓的長軸長為4,則,焦距為2,由,得,則橢圓的標準方程為:.故答案為:.14、10【解析】由等比數(shù)列的性質(zhì)可得,再利用對數(shù)的性質(zhì)可得結(jié)果【詳解】解:因為等比數(shù)列的各項均為正數(shù),且,所以,所以故答案為:1015、【解析】由的導(dǎo)數(shù)為,將代入,即可求出結(jié)果.【詳解】因為,所以,所以.故答案為:.16、【解析】由導(dǎo)數(shù)的幾何意義求解即可【詳解】,,解得.故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由即可獲解(2)p、q一真一假,分情況討論即可【小問1詳解】由命題為真,得任意,不等式恒成立所以即所以實數(shù)的取值范圍為【小問2詳解】由命題為真,得因為“或”為真,“且”為假,所以p、q一真一假若真假,則,即若假真,即所以實數(shù)的取值范圍為18、(1)(2)【解析】(1)由題意得出的值后寫橢圓方程(2)待定系數(shù)法設(shè)方程,由題意列方程求解【小問1詳解】的短軸頂點為(0,-3),(0,3),∴所求橢圓的焦點在y軸上,且c=3又,∴a=6.∴∴所求橢圓方程為【小問2詳解】根據(jù)雙曲線漸近線方程為,可設(shè)雙曲線的方程,把代入得m=1.所以雙曲線的方程為19、(1)當時,在上單調(diào)遞增;當時,在上單調(diào)遞減,在上單調(diào)遞增;(2)見詳解【解析】(1)對函數(shù)進行求導(dǎo),然后根據(jù)參數(shù)進行分類討論;(2)構(gòu)造函數(shù),求函數(shù)的最小值即可證出.【詳解】(1)的定義域為,.當時,在上恒成立,所以在上單調(diào)遞增;當時,時,;時,,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,當時,在上單調(diào)遞增;當時,在上單調(diào)遞減,在上單調(diào)遞增.(2)當時,.令,,則.,令,.恒成立,所以在上單調(diào)遞增.因為,,所以存在唯一的,使得,即.①當時,,即,所以在上單調(diào)遞減;當時,,即,所以在上單調(diào)遞增.所以,,②方法一:把①代入②得,.設(shè),.則恒成立,所以在上單調(diào)遞減,所以.因為,所以,即,所以,所以時,.方法二:設(shè),.則,所以在上單調(diào)遞增,所以,所以.因為,所以,所以,所以時,.【點睛】不等式證明問題是近年高考命題的熱點,利用導(dǎo)數(shù)證明不等式的方法主要有兩個:(1)不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)最值即可;(2)觀察不等式的特點,結(jié)合已解答問題把要證的不等式變形,并運用已證結(jié)論先行放縮,再化簡或者進一步利用導(dǎo)數(shù)證明.20、(1)答案見解析;(2).【解析】(1)求得,分、兩種情況討論,分析導(dǎo)數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)利用參變量分離法可得出對任意的恒成立,構(gòu)造函數(shù),其中,利用導(dǎo)數(shù)求出函數(shù)在上的最小值,由此可求得實數(shù)的取值范圍.【小問1詳解】解:函數(shù)的定義域為,.因為,由,可得.①當時,由可得,由可得.此時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;②當時,由可得,由可得,此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.綜上所述,當時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當時,函數(shù)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】解:當且時,由,可得,令,其中,.當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,則,.21、(1);(2)證明見解析.【解析】(1)利用拋物線點,n)到焦點的距離等于到x軸的距離求出,從而得到拋物線的標準方程(2)聯(lián)立直線與拋物線方程,通過韋達定理求出直線方程,然后由,即可求解【小問1詳解】由題意可得,故拋物線方程為;【小問2詳解】設(shè),,,,直線的方程為,聯(lián)立方程中,消去得,,則,又,解得或(舍去)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論