廣東省汕頭市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁(yè)
廣東省汕頭市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁(yè)
廣東省汕頭市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁(yè)
廣東省汕頭市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁(yè)
廣東省汕頭市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省汕頭市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線l:的傾斜角為()A. B.C. D.2.圓()上點(diǎn)到直線的最小距離為1,則A.4 B.3C.2 D.13.過(guò)橢圓+=1左焦點(diǎn)F1引直線交橢圓于A、B兩點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn),則△ABF2的周長(zhǎng)是()A.20 B.18C.10 D.164.若曲線與曲線在公共點(diǎn)處有公共切線,則實(shí)數(shù)()A. B.C. D.5.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用6.函數(shù)的極大值點(diǎn)為()A. B.C. D.不存在7.若數(shù)列是等比數(shù)列,且,則()A.1 B.2C.4 D.88.如圖,平行六面體中,為的中點(diǎn),,,,則()A. B.C. D.9.若點(diǎn),在拋物線上,是坐標(biāo)原點(diǎn),若等邊三角形的面積為,則該拋物線的方程是()A. B.C. D.10.經(jīng)過(guò)點(diǎn)且與直線垂直的直線方程為()A. B.C. D.11.計(jì)算復(fù)數(shù):()A. B.C. D.12.在平面直角坐標(biāo)系中,拋物線上點(diǎn)到焦點(diǎn)的距離為3,則焦點(diǎn)到準(zhǔn)線的距離為()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.過(guò)圓內(nèi)的點(diǎn)作一條直線,使它被該圓截得的線段最長(zhǎng),則直線的方程是______14.已知數(shù)列的前項(xiàng)和為,且滿足,,則___________.15.已知A(1,3),B(5,-2),點(diǎn)P在x軸上,則使|AP|-|BP|取最大值的點(diǎn)P的坐標(biāo)是________16.傳說(shuō)古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子來(lái)研究數(shù).用一點(diǎn)(或一個(gè)小石子)代表1,兩點(diǎn)(或兩個(gè)小石子)代表2,三點(diǎn)(或三個(gè)小石子)代表3,…他們研究了各種平面數(shù)(包括三角形數(shù)、正方形數(shù)、長(zhǎng)方形數(shù)、五邊形數(shù)、六邊形數(shù)等等)和立體數(shù)(包括立方數(shù)、棱錐數(shù)等等).如前四個(gè)四棱錐數(shù)為第n個(gè)四棱錐數(shù)為1+4+9+…+n2=.中國(guó)古代也有類似的研究,如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法?商功》中,后人稱為“三角垛”.“三角垛”的最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,…若一個(gè)“三角垛”共有20層,則第6層有____個(gè)球,這個(gè)“三角垛”共有______個(gè)球三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)F為橢圓的右焦點(diǎn),過(guò)點(diǎn)的直線與橢圓C交于兩點(diǎn).(1)若點(diǎn)B為橢圓C的上頂點(diǎn),求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.18.(12分)已知三角形的內(nèi)角所對(duì)的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.19.(12分)如圖,圓錐的底面直徑與母線長(zhǎng)均為4,PO是圓錐的高,點(diǎn)C是底面直徑AB所對(duì)弧的中點(diǎn),點(diǎn)D是母線PA的中點(diǎn)(1)求圓錐的表面積;(2)求點(diǎn)B到直線CD的距離20.(12分)如圖,在四棱錐中,四邊形是直角梯形,,,,為等邊三角形.(1)證明:;(2)求點(diǎn)到平面的距離.21.(12分)已知的展開(kāi)式中只有第五項(xiàng)的二項(xiàng)式系數(shù)最大.(1)求該展開(kāi)式中有理項(xiàng)的項(xiàng)數(shù);(2)求該展開(kāi)式中系數(shù)最大的項(xiàng).22.(10分)在三棱柱中,側(cè)面正方形的中心為點(diǎn)平面,且,點(diǎn)滿足(1)若平面,求的值;(2)求點(diǎn)到平面的距離;(3)若平面與平面所成角的正弦值為,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.2、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項(xiàng)是正確的.【點(diǎn)睛】判斷直線與圓的位置關(guān)系的常見(jiàn)方法:(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點(diǎn)與圓的位置關(guān)系法:若直線恒過(guò)定點(diǎn)且定點(diǎn)在圓內(nèi),可判斷直線與圓相交.上述方法中常用的是幾何法,點(diǎn)與圓的位置關(guān)系法適用于動(dòng)直線問(wèn)題3、A【解析】根據(jù)橢圓的定義求得正確選項(xiàng).【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長(zhǎng)為.故選:A4、A【解析】設(shè)公共點(diǎn)為,根據(jù)導(dǎo)數(shù)的幾何意義可得出關(guān)于、的方程組,即可解得實(shí)數(shù)、的值.【詳解】設(shè)公共點(diǎn)為,的導(dǎo)數(shù)為,曲線在處的切線斜率,的導(dǎo)數(shù)為,曲線在處的切線斜率,因?yàn)閮汕€在公共點(diǎn)處有公共切線,所以,且,,所以,即解得,所以,解得,故選:A5、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒(méi)有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.6、B【解析】求導(dǎo),令導(dǎo)數(shù)等于0,然后判斷導(dǎo)數(shù)符號(hào)可得,或者根據(jù)對(duì)勾函數(shù)圖象可解.【詳解】令,得,因?yàn)闀r(shí),,時(shí),,所以時(shí)有極大值;當(dāng)時(shí),,時(shí),,所以時(shí)有極小值.故選:B7、C【解析】根據(jù)等比數(shù)列的性質(zhì),由題中條件,求出,即可得出結(jié)果.【詳解】因?yàn)閿?shù)列是等比數(shù)列,由,得,所以,因此.故選:C.8、B【解析】先用向量與表示,然后用向量表示向量與,即可得解【詳解】解:為的中點(diǎn),故選:【點(diǎn)睛】本題考查了平面向量基本定理的應(yīng)用,解決本題的關(guān)鍵是熟練運(yùn)用向量的加法、減法及實(shí)數(shù)與向量的積的運(yùn)算,屬于基礎(chǔ)題9、A【解析】根據(jù)等邊三角形的面積求得邊長(zhǎng),根據(jù)角度求得點(diǎn)的坐標(biāo),代入拋物線方程求得的值.【詳解】設(shè)等邊三角形的邊長(zhǎng)為,則,解得根據(jù)拋物線的對(duì)稱性可知,且,設(shè)點(diǎn)在軸上方,則點(diǎn)的坐標(biāo)為,即,將代入拋物線方程得,解得,故拋物線方程為故選:A10、A【解析】根據(jù)點(diǎn)斜式求得正確答案.【詳解】直線的斜率為,經(jīng)過(guò)點(diǎn)且與直線垂直的直線方程為,即.故選:A11、D【解析】直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)可得結(jié)論.【詳解】故選:D.12、D【解析】根據(jù)給定條件求出拋物線C的焦點(diǎn)、準(zhǔn)線,再利用拋物線的定義求出a值計(jì)算作答.【詳解】拋物線的焦點(diǎn),準(zhǔn)線,依題意,由拋物線定義得,解得,所以拋物線焦點(diǎn)到準(zhǔn)線的距離為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當(dāng)直線l過(guò)圓心時(shí)滿足題意,進(jìn)而求出答案.【詳解】圓的標(biāo)準(zhǔn)方程為:,圓心,當(dāng)l過(guò)圓心時(shí)滿足題意,,所以l的方程為:.故答案為:.14、【解析】當(dāng)時(shí),,可得,可得數(shù)列隔項(xiàng)成等比數(shù)列,即所以數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別是等比數(shù)列,分別求和,即可得解.【詳解】因?yàn)?,,所以,?dāng)時(shí),,∴,所以數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別是等比數(shù)列,所以.故答案為:.15、【解析】首先求得點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn),然后數(shù)形結(jié)合結(jié)合直線方程求解點(diǎn)P的坐標(biāo)即可.【詳解】點(diǎn)A(1,3)關(guān)于x軸的對(duì)稱點(diǎn)為A′(1,-3),如圖所示,連接A′B并延長(zhǎng)交x軸于點(diǎn)P,即為所求直線A′B的方程是y+3=(x-1),即.令y=0,得x=13則點(diǎn)P的坐標(biāo)是.【點(diǎn)睛】本題主要考查直線方程的應(yīng)用,最值問(wèn)題的求解,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16、①.21②.1540【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到=,由此可求的值,以及前20層的總球數(shù)【詳解】由題意可知,,故==,所==21,所以S20=a1+a2+a3+a4+??+a20=(12+22+32+??+202)+(1+2+3+??+20)=×+×=1540故答案為:21;1540三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)證明見(jiàn)解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標(biāo),從而可求的直線方程;(2)設(shè),直線(或),則可用兩點(diǎn)的坐標(biāo)表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達(dá)定理可化簡(jiǎn)前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的上頂點(diǎn),則.又過(guò)點(diǎn),故直線由可得,解得即點(diǎn),又,故直線;(2)設(shè),方法一:設(shè)直線,代入橢圓方程可得:所以,故,又均不為0,故,即為定值方法二:設(shè)直線,代入橢圓方程可得:所以所以,即,所以,即為定值方法三:設(shè)直線,代入橢圓方程可得:所以,所以所以,把代入得方法四:設(shè)直線,代入橢圓的方程可得,則所以.因?yàn)?,代入?【點(diǎn)睛】思路點(diǎn)睛:直線與圓錐曲線的位置關(guān)系中的定點(diǎn)、定值、最值問(wèn)題,一般可通過(guò)聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把要求解的目標(biāo)代數(shù)式化為關(guān)于兩個(gè)的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為若干變量的方程(或函數(shù)),從而可求定點(diǎn)、定值、最值問(wèn)題.18、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長(zhǎng),進(jìn)一步求得面積【小問(wèn)1詳解】因?yàn)?,由正弦定理得因,所?因?yàn)榻菫殁g角,所以角為銳角,所以【小問(wèn)2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=19、(1)(2)【解析】(1)直接運(yùn)用圓錐的表面積公式計(jì)算即可;(2)建立空間直角坐標(biāo),然后運(yùn)用向量法計(jì)算可求得答案.【小問(wèn)1詳解】【小問(wèn)2詳解】如圖,建立直角坐標(biāo)系,,,,∴B在CD上投影的長(zhǎng)度∴B到CD的距離解法2:設(shè)直線CD上一點(diǎn)E滿足令,則∴,∴,∴∴,故B到CD距離為.20、(1)略;(2)【解析】(1)推導(dǎo)出BD⊥BC,PB⊥BC,從而B(niǎo)C⊥平面PBD,由此能證明PD⊥BC.(2)利用等體積求得點(diǎn)B到面的距離【詳解】(1)∵在四棱錐P﹣ABCD中,四邊形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC為等邊三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD?平面PBD,∴PD⊥BC(2)由(1)知,,故故得點(diǎn)B到面PCD的距離為【點(diǎn)睛】本題考查線線垂直的證明,考查點(diǎn)面距離的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題21、(1);(2)和【解析】(1)先求出,再寫出二項(xiàng)式展開(kāi)式的通項(xiàng),令即可求解;(2)設(shè)第項(xiàng)系數(shù)最大,則,即可解得的值,進(jìn)而可得展開(kāi)式中系數(shù)最大的項(xiàng).【詳解】(1)由題意可得:,得,的展開(kāi)式通項(xiàng)為,,要求展開(kāi)式中有理項(xiàng),只需令,所以所以有理項(xiàng)有5項(xiàng),(2)設(shè)第項(xiàng)系數(shù)最大,則,即,即,解得:,因?yàn)椋曰蛩?,所以展開(kāi)式中系數(shù)最大的項(xiàng)為和.【點(diǎn)睛】解二項(xiàng)式的題關(guān)鍵是求二項(xiàng)式展開(kāi)式的通項(xiàng),求有理項(xiàng)需要讓的指數(shù)位置是整數(shù),求展開(kāi)式中系數(shù)最大的項(xiàng)需要滿足第項(xiàng)的系數(shù)大于等于第項(xiàng)的系數(shù),第項(xiàng)的系數(shù)大于等于第項(xiàng)的系數(shù),屬于中檔題22、(1);(2);(3)或.【解析】(1)連接ME,證明即可計(jì)算作答.(2)以為原點(diǎn),的方向分別為軸正方向建立空間直角坐標(biāo)系,借助空間向量計(jì)算點(diǎn)到平面的距離即可.(3)由(2)中空間直角坐標(biāo)系,借助空間向量求平面與平面所成角的余弦即可計(jì)算作答.【小問(wèn)1詳解】在三棱柱中,因,即點(diǎn)在上,連接ME,如圖,因平面面,面面,則有,而為中點(diǎn),于是

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論