版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省漣水鄭梁梅高級中學2023-2024學年高二上數(shù)學期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,,令,若對于任意不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.2.已知集合,,則中元素的個數(shù)為()A.3 B.2C.1 D.03.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條4.如圖,在三棱錐中,兩兩垂直,且,點E為中點,若直線與所成的角為,則三棱錐的體積等于()A. B.C.2 D.5.已知直線和互相平行,則實數(shù)()A. B.C.或 D.或6.若橢圓與直線交于兩點,過原點與線段AB中點的直線的斜率為,則A. B.C. D.27.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.8.設函數(shù)在R上可導,則()A. B.C. D.以上都不對9.設為數(shù)列的前n項和,且,則=()A.26 B.19C.11 D.910.設α,β是兩個不同的平面,m,n是兩條不重合的直線,下列命題中為真命題的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么11.已知全集,集合,,則()A. B.C. D.12.青花瓷是中華陶瓷燒制工藝的珍品,也是中國瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對稱,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線l:y=-x+m與曲線有兩個公共點,則實數(shù)m的取值范圍是_______.14.沈陽市某高中有高一學生600人,高二學生500人,高三學生550人,現(xiàn)對學生關于消防安全知識了解情況進行分層抽樣調查,若抽取了一個容量為n的樣本,其中高三學生有11人,則n的值等于________.15.牛頓迭代法又稱牛頓-拉夫遜方法,它是牛頓在17世紀提出的一種在實數(shù)集上近似求解方程根的一種方法.具體步驟如下:設r是函數(shù)y=f(x)的一個零點,任意選取x0作為r的初始近似值,作曲線y=f(x)在點(x0,f(x0))處的切線l1,設l1與x軸交點的橫坐標為x1,并稱x1為r的1次近似值;作曲線y=f(x)在點(x1,f(x1))處的切線l2,設l2與x軸交點的橫坐標為x2,并稱x2為r的2次近似值.一般的,作曲線y=f(x)在點(xn,f(xn))(n∈N)處的切線ln+1,記ln+1與x軸交點的橫坐標為xn+1,并稱xn+1為r的n+1次近似值.設f(x)=x3+x-1的零點為r,取x0=0,則r的2次近似值為________16.直線l過拋物線的焦點F,且l與該拋物線交于不同的兩點,.若,則弦AB的長是____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(1)求曲線在點處的切線方程;(2)若對任意的,恒成立,求實數(shù)的取值范圍18.(12分)已知函數(shù)在與處都取得極值.(1)求a,b的值;(2)若對任意,不等式恒成立,求實數(shù)c的取值范圍.19.(12分)某學校高一、高二、高三的三個年級學生人數(shù)如下表,按年級分層抽樣的方法評選優(yōu)秀學生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分層抽樣的方法在高一學生中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率;(3)用隨機抽樣的方法從高二女生中抽取8人,經(jīng)檢測她們的得分如圖所示,把這8人的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過5分的概率.20.(12分)已知O為坐標原點,點P在拋物線C:上,點F為拋物線C的焦點,記P到直線的距離為d,且.(1)求拋物線C的標準方程;(2)若過點的直線l與拋物線C相切,求直線l的方程.21.(12分)已知函數(shù)在處有極值,且其圖象經(jīng)過點.(1)求的解析式;(2)求在的最值.22.(10分)如圖,在四棱錐中,底面是矩形,,,,,為的中點.(1)證明:平面;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)遞推關系,利用裂項相消法,累加法求出,可得,原不等式轉化為恒成立求解即可.【詳解】,,,由累加法可得,又,,符合上式,,,對于任意不等式恒成立,則,解得.故選:D2、B【解析】集合中的元素為點集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點組成的集合,集合B表示直線上所有的點組成的集合,又圓與直線相交于兩點,,則中有2個元素.故選B.【名師點睛】求集合的基本運算時,要認清集合元素的屬性(是點集、數(shù)集或其他情形)和化簡集合,這是正確求解集合運算的兩個先決條件.集合中元素的三個特性中的互異性對解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足互異性.3、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結合雙曲線的漸近線的性質,即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關系,以及雙曲線的漸近線的性質,其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應用,屬于基礎題.4、D【解析】由題意可證平面,取BD的中點F,連接EF,則為直線與所成的角,利用余弦定理求出,根據(jù)三棱錐體積公式即可求得體積【詳解】如圖,∵,點為的中點,∴,,∵,,兩兩垂直,,∴平面,取BD的中點F,連接EF,∴為直線與所成的角,且,由題意可知,,設,連接AF,則,在中,由余弦定理,得,即,解得,即∴三棱錐的體積故選:5、C【解析】根據(jù)題意,結合兩直線的平行,得到且,即可求解.【詳解】由題意,直線和互相平行,可得且,即且,解得或.故選:C.6、D【解析】細查題意,把代入橢圓方程,得,整理得出,設出點的坐標,由根與系數(shù)的關系可以推出線段的中點坐標,再由過原點與線段的中點的直線的斜率為,進而可推導出的值.【詳解】聯(lián)立橢圓方程與直線方程,可得,整理得,設,則,從而線段的中點的橫坐標為,縱坐標,因為過原點與線段中點的直線的斜率為,所以,所以,故選D.【點睛】該題是一道關于直線與橢圓的綜合性題目,涉及到的知識點有直線與橢圓相交時對應的解題策略,中點坐標公式,斜率坐標公式,屬于簡單題目.7、C【解析】利用數(shù)量積運算性質、等比數(shù)列的性質及其對數(shù)運算性質即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質、等比數(shù)列的性質及其對數(shù)運算性質,考查推理能力與計算能力,屬于中檔題8、B【解析】根據(jù)極限的定義計算【詳解】由題意故選:B9、D【解析】先求得,然后求得.【詳解】依題意,當時,,當時,,,所以,所以.故選:D10、C【解析】AB.利用兩平面的位置關系判斷;CD.利用面面平行的判定定理判斷;【詳解】A.如果,,n∥β,那么α,β相交或平行;故錯誤;B.如果,,,那么α,β垂直,故錯誤;C.如果m∥n,,則,又,那么α∥β,故C正確;D錯誤,故選:C11、A【解析】先求,然后求.【詳解】,,.故選:A12、C【解析】由題意作出軸截面,最短直徑為2a,根據(jù)已知條件點(2a,2a)在雙曲線上,代入雙曲線的標準方程,結合a,b,c的關系可求得離心率e的值【詳解】由題意作出軸截面如圖:M點是雙曲線與截面正方形的交點之一,設雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡后得,解得故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】曲線表示圓的右半圓,結合的幾何意義,得出實數(shù)m的取值范圍.【詳解】曲線表示圓的右半圓,當直線與相切時,,即,由表示直線的截距,因為直線l與曲線有兩個公共點,由圖可知,所以.故答案為:.14、33【解析】根據(jù)分層抽樣的性質進行求解即可.【詳解】因為抽取了一個容量為n的樣本,其中高三學生有11人,所以有,故答案為:3315、##【解析】利用導數(shù)的幾何意義根據(jù)r的2次近似值的定義求解即可【詳解】由,得,取,,所以過點作曲線的切線的斜率為1,所以直線的方程為,其與軸交點的橫坐標為1,即,因為,所以過點作曲線的切線的斜率為4,所以直線的方程為,其與軸交點的橫坐標為,即,故答案為:16、4【解析】由題意得,再結合拋物線的定義即可求解.【詳解】由題意得,由拋物線的定義知:,故答案為:4.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)求出函數(shù)的導數(shù),計算,,求出切線方程即可;(2)問題轉化為,利用導函數(shù)求出的最大值,求出的范圍即可.【小問1詳解】因為,所以,則切線的斜率為,又因為,則切點為,所以曲線在點處的切線方程為,即【小問2詳解】當時,令得,列表得x001↘極小值↗所以當時,的最大值為由題意知,故,解之得,所以實數(shù)的取值范圍為.18、(1),;(2).【解析】(1)極值點處導數(shù)值為零,據(jù)此即可求出a和b;(2)利用導數(shù)求出f(x)在時的最大值即可.【小問1詳解】由題設,,又,,解得,.【小問2詳解】由(1)得,即,當時,,隨的變化情況如下表:1+0-0+遞增極大值遞減極小值遞增∴在上單調遞增,在上單調遞減,在上單調遞增,∴當時,為極大值,又,顯然f(-)<f(2)所以為在上的最大值.要使對任意恒成立,則只需,解得或c>1.∴實數(shù)c的取值范圍為.19、(1)400(2)(3)【解析】(1)根據(jù)分層抽樣的方法,列出關系式計算即可;(2)根據(jù)分層抽樣的方法,求出抽取的女生人數(shù),進而列舉出從樣本中抽取2人的所有情況,可根據(jù)古典概型的概率公式計算即可;(3)求出樣本平均數(shù),進而求出與樣本平均數(shù)之差的絕對值不超過5的數(shù),從而利于古典概型的概率公式計算即可.【小問1詳解】設該??側藬?shù)為n人,由題意得,所以,.【小問2詳解】設所抽樣本中有m個女生,因為用分層抽樣的方法在高一學生中抽取一個容量為5的樣本,所以,解得.所以抽取了2名女生,3名男生,分別記作,;,,,則從中任取2人的所有基本事件為:,,,,,,,,,,共10個,其中至少有1名女生的基本事件有,,,,,,,共7個,所以從中任取2人,至少有1名女生的概率為.【小問3詳解】樣本的平均數(shù)為,那么與樣本平均數(shù)之差的絕對值不超過5的數(shù)為94,86,92,87,90,93這6個數(shù),總的個數(shù)為8,所以該數(shù)與樣本平均數(shù)之差的絕對值不超過5的概率為.20、(1);(2)或.【解析】(1)根據(jù)拋物線的定義進行求解即可;(2)根據(jù)直線l是否存在斜率分類討論,結合一元二次方程根的判別式進行求解即可.【小問1詳解】因為,所以P到直線的距離等于,所以拋物線C的準線為,所以,,所以拋物線C的標準方程為;【小問2詳解】當直線l的斜率不存在時,方程為,此時直線l恰與拋物線C相切當直線l的斜率存在時,設其方程為,聯(lián)立方程,得若,顯然不合題意;若,則,解得此時直線l的方程為綜上,直線l與拋物線C相切時,l的方程為或.21、(1)(2),【解析】(1)由與解方程組即可得解;(2)求導后得到函數(shù)的單調區(qū)間與極值后,比較端點值即可得解.【詳解】(1)求導得,處有極值,即,又圖象過點,代入可得..(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年防汛抗旱調度員資格認證考試題庫與預案含答案
- 【中考數(shù)學試卷+答案解析】操作探究
- 與焦慮言和從容應考
- 護理技術總結內容
- 2026年劇本殺運營公司員工崗位考核與聘任管理制度
- 2026年劇本殺運營公司連鎖門店標準化管控管理制度
- 人工智能輔助下的高中物理課堂教學:對教師教育觀念的挑戰(zhàn)與拓展教學研究課題報告
- 護理部護理服務國際化匯報
- 2026年及未來5年中國模具材料行業(yè)市場前景預測及投資戰(zhàn)略研究報告
- 云南特色介紹
- 預防接種規(guī)范知識培訓課件
- 部隊裝備換季保養(yǎng)課件
- DB 5303∕T 23-2024 《露地甜櫻桃種植技術規(guī)程》
- 《微壓富氧康養(yǎng)整體空間設備》
- 衛(wèi)星互聯(lián)網(wǎng)基礎知識培訓課件
- 2025年敖漢旗就業(yè)服務中心招聘第一批公益性崗位人員的112人模擬試卷含答案詳解
- 婚姻家庭繼承實務講座
- 新內瘺穿刺護理
- 鉗工個人實習總結
- 大健康養(yǎng)肝護肝針專題課件
- 道路高程測量成果記錄表-自動計算
評論
0/150
提交評論