版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省江陰初級中學2024屆高二數學第一學期期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的一個方向向量為,則它的斜率為()A. B.C. D.2.若數列等差數列,a1=1,,則a5=()A. B.C. D.3.已知集合,從集合A中任取一點P,則點P滿足約束條件的概率為()A. B.C. D.4.已知點,是橢圓:的左、右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.5.已知數列滿足:,數列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.6.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.7.點到直線的距離為A.1 B.2C.3 D.48.已知等差數列的前項和為,若,則()A B.C. D.9.雙曲線的光學性質為:如圖①,從雙曲線右焦點發(fā)出的光線經雙曲線鏡面反射,反射光線的反向延長線經過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質.某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點,若從右焦點發(fā)出的光線經雙曲線上的點和點反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.10.已知雙曲線的左、右焦點分別為,,點在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.11.已知雙曲線離心率為2,過點的直線與雙曲線C交于A,B兩點,且點P恰好是弦的中點,則直線的方程為()A. B.C. D.12.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四面體中,BA,BC,BD兩兩垂直,,,則二面角的大小為______14.甲、乙兩人下棋,甲獲勝的概率為,乙獲勝的概率為,則甲、乙兩人下成和棋的概率為___________.15.已知橢圓的左、右焦點分別為、,關于原點對稱的點A、B在橢圓上,且滿足,若令且,則該橢圓離心率的取值范圍為___________16.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某電腦公司為調查旗下A品牌電腦的使用情況,隨機抽取200名用戶,根據不同年齡段(單位:歲)統(tǒng)計如下表:分組頻率/組距0.010.040.070.060.02(1)根據上表,試估計樣本的中位數、平均數(同一組數據以該組區(qū)間的中點值為代表,結果精確到0.1);(2)按照年齡段從內的用戶中進行分層抽樣,抽取6人,再從中隨機選取2人贈送小禮品,求恰有1人在內的概率18.(12分)一個盒中裝有編號分別為、、、的四個形狀大小完全相同的小球.(1)從盒中任取兩球,列出所有的基本事件,并求取出的球的編號之和大于的概率;(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,列出所有的基本事件,并求的概率.19.(12分)已知數列的前項和為,且.(1)求的通項公式;(2)求數列的前項和.20.(12分)已知函數(1)討論函數的單調性;(2)證明:對任意正整數n,21.(12分)若數列的前n項和滿足,(1)求的通項公式;(2)設,求數列的前n項和22.(10分)在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2(1)求四棱錐P﹣ABCD的體積V;(2)若F為PC的中點,求證PC⊥平面AEF
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據的方向向量求得斜率.【詳解】且是直線的方向向量,.故選:A2、B【解析】令、可得等差數列的首項和第三項,即可求出第五項,從而求出.【詳解】令得,令得,所以數列的公差為,所以,解得,故選:B.3、C【解析】根據圓的性質,結合兩條直線的位置關系、幾何概型計算公式進行求解即可.【詳解】,圓心坐標為,半徑為,直線互相垂直,且交點為,由圓的性質可知:點P滿足約束條件的概率為,故選:C4、D【解析】設,先求出點,得,化簡即得解【詳解】由題意可知橢圓的焦點在軸上,如圖所示,設,則,∵為等腰三角形,且,∴.過作垂直軸于點,則,∴,,即點.∵點在過點且斜率為的直線上,∴,解得,∴.故選:D【點睛】方法點睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關于離心率的方程解方程即得解).5、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D6、B【解析】由題設可得,又,易知,,將問題轉化為平面點線距離關系:向量的終點為圓心,1為半徑的圓上的點到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉化為求在圓上的哪一點時,使最小,又,∴當且僅當三點共線且時,最小為.故選:B.【點睛】關鍵點點睛:由已知確定,,構成等邊三角形,即可將問題轉化為圓上動點到射線的距離最短問題.7、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.8、B【解析】利用等差數列的性質可求得的值,再結合等差數列求和公式以及等差中項的性質可求得的值.【詳解】由等差數列的性質可得,則,故.故選:B.9、C【解析】連接,已知條件為,,設,由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應用勾股定理得出的關系,求得離心率【詳解】易知共線,共線,如圖,設,,則,由得,,又,所以,,所以,所以,由得,因為,故解得,則,在中,,即,所以故選:C10、C【解析】根據雙曲線的定義求得,利用可得離心率范圍【詳解】因為,又,所以,,又,即,,所以離心率故選:C11、C【解析】運用點差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設,,則兩式相減得,即.又因為點P恰好是弦的中點,所以,,所以直線的斜率為,所以直線的方程為,即.經檢驗滿足題意故選:C12、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時,、至少有一個為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因為也成立.所以A不正確;對于B,命題“”為假命題時,、至少有一個為假命題,所以B錯誤;C錯誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】取的中點為,連接,由面面角的定義得出二面角的平面角為,再結合等腰直角三角形的性質得出二面角的大小.【詳解】取的中點為,連接,因為,所以二面角的平面角為,因為,,所以為等腰直角三角形,即二面角的大小為.故答案為:14、##【解析】直接根據概率和為1計算得到答案.【詳解】.故答案為:.15、【解析】由得為矩形,則,故,結合正弦函數即可求得范圍【詳解】由已知可得,且四邊形為矩形所以,又因為,所以得離心率因為,所以,可得,從而故答案為:16、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)中位數為38.6,平均數為38.5歲;(2).【解析】(1)由中位數分數據兩邊的頻率相等,列方程求中位數;根據各組數據的中點數乘以頻率即可得平均數;(2)由分層抽樣確定從中各抽4人、2人,列舉出隨機選取2人的所有組合,得到恰有1人在的組合數,即可求概率.【詳解】(1)中位數在中,設為,則,解得.平均數為歲.所以樣本的中位數約為38.6,平均數為38.5歲.(2)根據分層抽樣法,其中位于中的有4人,記為,,,;位于中的有2人,記為,.從6人中抽取2人,有,,,,,,,,,,,,,,,共15種情況,恰有1人在內的有,,,,,,,,共8種情況,∴恰有1人在內的概率為.【點睛】關鍵點點睛:由中位數的性質以及平均數與各組數據中點值、頻率的關系求中位數、平均數;根據分層抽樣確定各組選取人數,利用列舉法求概率.18、(1)基本事件答案見解析,概率為;(2)基本事件答案見解析,概率為.【解析】(1)利用列舉法列舉出所有的基本事件,并確定事件“取出的球的編號之和大于”所包含的基本事件數,利用古典概型的概率公式可求得結果;(2)利用列舉法列舉出所有的基本事件,并確定事件“”所包含的基本事件數,利用古典概型的概率公式可求得結果.【詳解】(1)記“從盒中任取兩球,取出球的編號之和大于”為事件,樣本點表示“從盒中取出、號球”,且和表示相同的樣本點(以此類推),則樣本空間為,則,根據古典概型可知,從盒中任取兩球,取出球的編號之和大于的概率為;(2)記“”為事件,樣本點表示第一次取出號球,將球放回,從盒中取出號球(以此類推),則樣本空間,則,所以,故事件“”的概率為.19、(1);(2).【解析】(1)利用,結合已知條件,即可容易求得通項公式;(2)根據(1)中所求,對數列進行裂項求和,即可求得.【小問1詳解】當時,.當時,,因為當時,,所以.【小問2詳解】因為,所以,故數列的前項和.20、(1)見解析(2)見解析【解析】(1)由,令,得,或,又的定義域為,討論兩個根及的大小關系,即可判定函數的單調性;(2)當時,在,上遞減,則,即,由此能夠證明【小問1詳解】的定義域為,,令,得,或,①當,即時,若,則,遞增;若,則,遞減;②當,即時,若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當-2<a<0時,f(x)在,單調遞減,在單調遞增;當a≥0時,f(x)在單調遞增,在單調遞減.【小問2詳解】由(2)知當時,在,上遞減,,即,,,,2,3,,,,【點睛】本題考查利用導數研究函數的單調性,本題的關鍵是令a=1,用已知函數的單調性構造,再令x=恰當地利用對數求和進行解題21、(1)(2)【解析】(1)根據遞推關系結合等比數列的定義可求解;(2)根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GA 1408-2017 警帽 禮儀大檐帽》專題研究報告
- 《GA 758-2008 9mm警用轉輪手槍》專題研究報告
- 中學社團指導教師職責制度
- 養(yǎng)老院入住老人遺物保管與處理制度
- 企業(yè)內部培訓與發(fā)展規(guī)劃制度
- 交通管制與疏導方案制度
- 2026湖北省定向重慶大學選調生招錄備考題庫附答案
- 2026湖南郴州莽山旅游開發(fā)有限責任公司面向社會招聘40人備考題庫附答案
- 2026福建泉州石獅市鳳里街道中心幼兒園春季招聘備考題庫附答案
- 2026西藏自治區(qū)定向選調生招錄(70人)參考題庫附答案
- 旅居養(yǎng)老可行性方案
- 燈謎大全及答案1000個
- 老年健康與醫(yī)養(yǎng)結合服務管理
- 中國焦慮障礙防治指南
- 1到六年級古詩全部打印
- 心包積液及心包填塞
- GB/T 40222-2021智能水電廠技術導則
- 兩片罐生產工藝流程XXXX1226
- 第十章-孤獨癥及其遺傳學研究課件
- 人教版四年級上冊語文期末試卷(完美版)
- 工藝管道儀表流程圖PID基礎知識入門級培訓課件
評論
0/150
提交評論