TR算法在某大型變風(fēng)量空調(diào)系統(tǒng)變靜壓控制法中的應(yīng)用_第1頁
TR算法在某大型變風(fēng)量空調(diào)系統(tǒng)變靜壓控制法中的應(yīng)用_第2頁
TR算法在某大型變風(fēng)量空調(diào)系統(tǒng)變靜壓控制法中的應(yīng)用_第3頁
全文預(yù)覽已結(jié)束

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

TR算法在某大型變風(fēng)量空調(diào)系統(tǒng)變靜壓控制法中的應(yīng)用AbstractTheTRalgorithm,alsoknownastheTrustRegionalgorithm,isapowerfuloptimizationmethodthathasbeenextensivelystudiedandappliedinvariousfields.Inthecontextofvariableairvolume(VAV)airconditioningsystems,theTRalgorithmhasemergedasapromisingapproachforcontrollingthestaticpressureandachievingefficientandenergy-savingoperation.ThispaperprovidesanoverviewoftheTRalgorithm,itstheoreticalfoundation,anditspracticalapplicationsinVAVairconditioningsystems.WehighlighttheadvantagesandchallengesofusingtheTRalgorithmforVAVcontrol,anddiscusssomeoftherecentresearchprogressandfutureopportunities.IntroductionVAVairconditioningsystemsarewidelyusedincommercialandindustrialbuildingstoprovidecomfortableindoorenvironmentsandimproveenergyefficiency.ThebasicprincipleofVAVcontrolistoadjusttheflowrateoftheairsupplytomatchtheactualdemandofthespace,whichisusuallymeasuredbytemperatureandhumiditysensors.Inadditiontoflowratecontrol,VAVsystemsalsoneedtomaintainthestaticpressureintheductworkwithinacertainrangetoensurestableandreliableoperationoftheairdistributionsystem.StaticpressurecontrolinVAVsystemsisachallengingtaskduetothenonlinearandtime-varyingcharacteristicsofthesystem.Traditionalcontrolmethods,suchasproportional-integral-derivative(PID)controlandfuzzylogiccontrol,havelimitationsindealingwiththecomplexdynamicsanduncertaintiesoftheVAVsystem.TheTRalgorithm,ontheotherhand,isapromisingoptimizationapproachthatcanhandlenonlinearityanduncertaintywithouttheneedfordetailedsystemmodeling.TRAlgorithmBasicsTheTRalgorithmisatypeofoptimizationmethodthatiterativelysolvesasequenceofsubproblemswithinatrustregion,whichisaregionaroundthecurrentpointintheoptimizationspace.Theobjectivefunctionisapproximatedbyaquadraticmodelderivedfromthefirstandsecond-orderderivativesofthefunctionatthecurrentpoint,andthequadraticmodelisusedtocalculatethenextiteratewithinthetrustregion.Thesizeofthetrustregionisadjustedadaptivelybasedontheperformanceofthequadraticmodelandtheoriginalobjectivefunction.TheTRalgorithmhastheadvantagesofconvergence,robustness,andglobaloptimization,andcanhandleawiderangeofoptimizationproblems,includingnonlinear,nonconvex,andnonsmoothproblems.ApplicationinVAVAirConditioningSystemsTheTRalgorithmhasbeenappliedtoVAVairconditioningsystemsinrecentyearstocontrolthestaticpressureandimproveenergyefficiency.ThebasicideaistousetheTRalgorithmtoadjustthesetpointofthestaticpressurecontrollerbasedonthemeasuredflowrate,temperature,andhumiditydata.TheTRalgorithmcanhandlethenonlinearandtime-varyingcharacteristicsoftheVAVsystem,andcanadaptivelyadjustthesetpointtomaintainthestaticpressurewithinacertainrangewhileminimizingtheenergyconsumptionoftheairdistributionsystem.OneofthechallengesofusingtheTRalgorithminVAVcontrolisthedeterminationofthetrustregionsize.Asmalltrustregionsizemaycausethealgorithmtoconvergeslowlyorprematurely,whilealargetrustregionsizemayleadtoinstabilityoroscillations.Toaddressthisissue,researchershaveproposedvariousmethodstoadaptivelyadjustthetrustregionsizebasedonthemeasurementoftheperformanceandfeasibilityofthecurrentsolution.Anotherchallengeistheselectionoftheobjectivefunctionandtheconstraints.Theobjectivefunctionshouldreflectthetrade-offbetweentheenergyconsumptionandthestaticpressuredeviation,whiletheconstraintsshouldensurethefeasibilityandsafetyoftheairdistributionsystem.Researchershavepresenteddifferentobjectivefunctionsandconstraintsbasedontheirassumptionsandpreferences,suchasthequadraticcostfunction,theweightedsumofcostanddeviation,andtheprobabilisticconstraint-basedapproach.ConclusionandOutlookTheTRalgorithmisapowerfuloptimizationmethodthathasshowngreatpotentialinVAVcontrolforthestaticpressureoptimization.TheTRalgorithmcanhandlethenonlinearandtime-varyingcharacteristicsoftheVAVsystem,andcanadaptivelyadjustthesetpointtomaintainthestaticpressurewithinacertainrangewhileminimizingtheenergyconsumptionoftheairdistributionsystem.However,therearestillsomechallengesandopenissuesthatneedtobeaddressedinthefutureresearch,suchastherobustnessandadaptivityofthetrustregionsize,theselectionoftheobjectivefunctionandtheconstraints,andtheintegrationwithothercontrolstrategiessuchasmodelpredictivecontrolandreinforcementlearning.Furtherresearchintheseareasmayleadtomoreefficient,reliable,andintelligentVAVcontrolsystems.References1.Niu,Y.,&Liu,Y.(2020).StaticpressureoptimizationcontrolofVAVairconditioningsystembasedonTRmethod.BuildingServicesEngineeringResearchandTechnology,41(2),169-191.2.Yang,X.,Chen,N.,&Wang,Y.(2020).Aprobability-constrainedtrustregionmethodforstaticpressureoptimizationinVAVairconditioningsystems.BuildingSimulation,13(6),1251-1266.3.Wang,Y.,Liao,S.,&Liang,J.(2018).TrustregionalgorithmsforHVACsystemoptimization:Areview.EnergyandBuildings,173,214-228.4.Yang,X.,Chen,N.,Wang,Y.,&Li,W.(2019).A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論