2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題卷及答案_第1頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題卷及答案_第2頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題卷及答案_第3頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題卷及答案_第4頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題卷及答案_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題卷及答案一、解答題1.如圖,用兩個(gè)面積為的小正方形拼成一個(gè)大的正方形.(1)則大正方形的邊長(zhǎng)是___________;(2)若沿著大正方形邊的方向裁出一個(gè)長(zhǎng)方形,能否使裁出的長(zhǎng)方形紙片的長(zhǎng)寬之比為5:4,且面積為?2.(1)如圖,分別把兩個(gè)邊長(zhǎng)為的小正方形沿一條對(duì)角線裁成個(gè)小三角形拼成一個(gè)大正方形,則大正方形的邊長(zhǎng)為_(kāi)______;(2)若一個(gè)圓的面積與一個(gè)正方形的面積都是,設(shè)圓的周長(zhǎng)為,正方形的周長(zhǎng)為,則_____(填“”或“”或“”號(hào));(3)如圖,若正方形的面積為,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為的長(zhǎng)方形紙片,使它的長(zhǎng)和寬之比為,他能裁出嗎?請(qǐng)說(shuō)明理由?3.如圖用兩個(gè)邊長(zhǎng)為cm的小正方形紙片拼成一個(gè)大的正方形紙片,沿著大正方形紙片的邊的方向截出一個(gè)長(zhǎng)方形紙片,能否使截得的長(zhǎng)方形紙片長(zhǎng)寬之比為,且面積為cm2?請(qǐng)說(shuō)明理由.4.某市在招商引資期間,把已倒閉的油泵廠出租給外地某投資商,該投資商為減少固定資產(chǎn)投資,將原來(lái)的400m2的正方形場(chǎng)地改建成300m2的長(zhǎng)方形場(chǎng)地,且其長(zhǎng)、寬的比為5:3.(1)求原來(lái)正方形場(chǎng)地的周長(zhǎng);(2)如果把原來(lái)的正方形場(chǎng)地的鐵柵欄圍墻全部利用,圍成新場(chǎng)地的長(zhǎng)方形圍墻,那么這些鐵柵欄是否夠用?試?yán)盟鶎W(xué)知識(shí)說(shuō)明理由.5.小麗想用一塊面積為的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為的長(zhǎng)方形紙片,使它的長(zhǎng)是寬的2倍.她不知能否裁得出來(lái),正在發(fā)愁.小明見(jiàn)了說(shuō):“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說(shuō)法嗎?你認(rèn)為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?二、解答題6.已知,AB∥CD,點(diǎn)E為射線FG上一點(diǎn).(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),此時(shí)CD與AE交于點(diǎn)H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請(qǐng)說(shuō)明你的結(jié)論;(3)如圖3,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).7.已知,AB∥CD,點(diǎn)E在CD上,點(diǎn)G,F(xiàn)在AB上,點(diǎn)H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點(diǎn)M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點(diǎn)K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).8.如圖,已知//,點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),分別平分和,分別交射線于點(diǎn).(1)當(dāng)時(shí),的度數(shù)是_______;(2)當(dāng),求的度數(shù)(用的代數(shù)式表示);(3)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),與的度數(shù)之比是否隨點(diǎn)的運(yùn)動(dòng)而發(fā)生變化?若不變化,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)寫出變化規(guī)律.(4)當(dāng)點(diǎn)運(yùn)動(dòng)到使時(shí),請(qǐng)直接寫出的度數(shù).9.已知,AB∥CD.點(diǎn)M在AB上,點(diǎn)N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出∠FEQ的度數(shù).10.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過(guò)點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).三、解答題11.已知,點(diǎn)為平面內(nèi)一點(diǎn),于.(1)如圖1,點(diǎn)在兩條平行線外,則與之間的數(shù)量關(guān)系為_(kāi)_____;(2)點(diǎn)在兩條平行線之間,過(guò)點(diǎn)作于點(diǎn).①如圖2,說(shuō)明成立的理由;②如圖3,平分交于點(diǎn)平分交于點(diǎn).若,求的度數(shù).12.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點(diǎn),若,試探求與的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,在(2)的條件下,且的延長(zhǎng)線與的延長(zhǎng)線有交點(diǎn),當(dāng)點(diǎn)在線段的延長(zhǎng)線上從左向右移動(dòng)的過(guò)程中,直接寫出與所有可能的數(shù)量關(guān)系.13.如圖1,E點(diǎn)在上,..(1)求證:(2)如圖2,平分,與的平分線交于H點(diǎn),若比大,求的度數(shù).(3)保持(2)中所求的的度數(shù)不變,如圖3,平分平分,作,則的度數(shù)是否改變?若不變,請(qǐng)直接寫出答案;若改變,請(qǐng)說(shuō)明理由.14.如圖1,,E是、之間的一點(diǎn).(1)判定,與之間的數(shù)量關(guān)系,并證明你的結(jié)論;(2)如圖2,若、的兩條平分線交于點(diǎn)F.直接寫出與之間的數(shù)量關(guān)系;(3)將圖2中的射線沿翻折交于點(diǎn)G得圖3,若的余角等于的補(bǔ)角,求的大?。?5.如圖1,,在、內(nèi)有一條折線.(1)求證:;(2)在圖2中,畫(huà)的平分線與的平分線,兩條角平分線交于點(diǎn),請(qǐng)你補(bǔ)全圖形,試探索與之間的關(guān)系,并證明你的結(jié)論;(3)在(2)的條件下,已知和均為鈍角,點(diǎn)在直線、之間,且滿足,,(其中為常數(shù)且),直接寫出與的數(shù)量關(guān)系.四、解答題16.在△ABC中,射線AG平分∠BAC交BC于點(diǎn)G,點(diǎn)D在BC邊上運(yùn)動(dòng)(不與點(diǎn)G重合),過(guò)點(diǎn)D作DE∥AC交AB于點(diǎn)E.(1)如圖1,點(diǎn)D在線段CG上運(yùn)動(dòng)時(shí),DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)D在線段BG上運(yùn)動(dòng)時(shí),∠BDE的角平分線所在直線與射線AG交于點(diǎn)F試探究∠AFD與∠B之間的數(shù)量關(guān)系,并說(shuō)明理由17.解讀基礎(chǔ):(1)圖1形似燕尾,我們稱之為“燕尾形”,請(qǐng)寫出、、、之間的關(guān)系,并說(shuō)明理由;(2)圖2形似8字,我們稱之為“八字形”,請(qǐng)寫出、、、之間的關(guān)系,并說(shuō)明理由:應(yīng)用樂(lè)園:直接運(yùn)用上述兩個(gè)結(jié)論解答下列各題(3)①如圖3,在中,、分別平分和,請(qǐng)直接寫出和的關(guān)系;②如圖4,.(4)如圖5,與的角平分線相交于點(diǎn),與的角平分線相交于點(diǎn),已知,,求和的度數(shù).18.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問(wèn)題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.19.【問(wèn)題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數(shù)量關(guān)系?并說(shuō)明理由;【問(wèn)題遷移】如圖2,DF∥CE,點(diǎn)P在三角板AB邊上滑動(dòng),∠PCE=∠α,∠PDF=∠β.(1)當(dāng)點(diǎn)P在E、F兩點(diǎn)之間運(yùn)動(dòng)時(shí),如果α=30°,β=40°,則∠DPC=°.(2)如果點(diǎn)P在E、F兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、E、F四點(diǎn)不重合),寫出∠DPC與α、β之間的數(shù)量關(guān)系,并說(shuō)明理由.(圖1)(圖2)20.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.【參考答案】一、解答題1.(1);(2)不能剪出長(zhǎng)寬之比為5:4,且面積為的大長(zhǎng)方形,理由詳見(jiàn)解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長(zhǎng);(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為,寬為,根據(jù)解析:(1);(2)不能剪出長(zhǎng)寬之比為5:4,且面積為的大長(zhǎng)方形,理由詳見(jiàn)解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長(zhǎng);(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為,寬為,根據(jù)面積列得,求出,得到,由此判斷不能裁出符合條件的大正方形.【詳解】(1)∵用兩個(gè)面積為的小正方形拼成一個(gè)大的正方形,∴大正方形的面積為400,∴大正方形的邊長(zhǎng)為故答案為:20cm;(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為,寬為,,解得:,,答:不能剪出長(zhǎng)寬之比為5:4,且面積為的大長(zhǎng)方形.【點(diǎn)睛】此題考查利用算術(shù)平方根解決實(shí)際問(wèn)題,利用平方根解方程,正確理解題意是解題的關(guān)鍵.2.(1);(2);(3)不能裁剪出,詳見(jiàn)解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長(zhǎng);(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長(zhǎng),進(jìn)而可求得圓和正方形解析:(1);(2);(3)不能裁剪出,詳見(jiàn)解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長(zhǎng);(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長(zhǎng),進(jìn)而可求得圓和正方形的周長(zhǎng),利用作商法比較這兩數(shù)大小即可;(3)利用方程思想求出長(zhǎng)方形的長(zhǎng)邊,與正方形邊長(zhǎng)比較大小即可;【詳解】解:(1)∵小正方形的邊長(zhǎng)為1cm,∴小正方形的面積為1cm2,∴兩個(gè)小正方形的面積之和為2cm2,即所拼成的大正方形的面積為2cm2,∴大正方形的邊長(zhǎng)為cm,(2)∵,∴,∴,設(shè)正方形的邊長(zhǎng)為a∵,∴,∴,∴故答案為:<;(3)解:不能裁剪出,理由如下:∵長(zhǎng)方形紙片的長(zhǎng)和寬之比為,∴設(shè)長(zhǎng)方形紙片的長(zhǎng)為,寬為,則,整理得:,∴,∵450>400,∴,∴,∴長(zhǎng)方形紙片的長(zhǎng)大于正方形的邊長(zhǎng),∴不能裁出這樣的長(zhǎng)方形紙片.【點(diǎn)睛】本題通過(guò)圓和正方形的面積考查了對(duì)算術(shù)平方根的應(yīng)用,主要是對(duì)學(xué)生無(wú)理數(shù)運(yùn)算及比較大小進(jìn)行了考查.3.不能截得長(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見(jiàn)解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埥馕觯翰荒芙氐瞄L(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見(jiàn)解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埰拿娣e為()2+()2=36(cm2),所以大正方形的邊長(zhǎng)為6cm,設(shè)截出的長(zhǎng)方形的長(zhǎng)為3bcm,寬為2bcm,則6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得長(zhǎng)寬之比為3:2,且面積為30cm2的長(zhǎng)方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,理解算術(shù)平方根的意義是正確解答的關(guān)鍵.4.(1)原來(lái)正方形場(chǎng)地的周長(zhǎng)為80m;(2)這些鐵柵欄夠用.【分析】(1)正方形邊長(zhǎng)=面積的算術(shù)平方根,周長(zhǎng)=邊長(zhǎng)×4,由此解答即可;(2)長(zhǎng)、寬的比為5:3,設(shè)這個(gè)長(zhǎng)方形場(chǎng)地寬為3am,則長(zhǎng)為解析:(1)原來(lái)正方形場(chǎng)地的周長(zhǎng)為80m;(2)這些鐵柵欄夠用.【分析】(1)正方形邊長(zhǎng)=面積的算術(shù)平方根,周長(zhǎng)=邊長(zhǎng)×4,由此解答即可;(2)長(zhǎng)、寬的比為5:3,設(shè)這個(gè)長(zhǎng)方形場(chǎng)地寬為3am,則長(zhǎng)為5am,計(jì)算出長(zhǎng)方形的長(zhǎng)與寬可知長(zhǎng)方形周長(zhǎng),同理可得正方形的周長(zhǎng),比較大小可知是否夠用.【詳解】解:(1)=20(m),4×20=80(m),答:原來(lái)正方形場(chǎng)地的周長(zhǎng)為80m;(2)設(shè)這個(gè)長(zhǎng)方形場(chǎng)地寬為3am,則長(zhǎng)為5am.由題意有:3a×5a=300,解得:a=±,∵3a表示長(zhǎng)度,∴a>0,∴a=,∴這個(gè)長(zhǎng)方形場(chǎng)地的周長(zhǎng)為2(3a+5a)=16a=16(m),∵80=16×5=16×>16,∴這些鐵柵欄夠用.【點(diǎn)睛】本題考查了算術(shù)平方根的實(shí)際應(yīng)用,解答本題的關(guān)鍵是明確題意,求出長(zhǎng)方形和正方形的周長(zhǎng).5.不同意,理由見(jiàn)解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,解析:不同意,理由見(jiàn)解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,故邊長(zhǎng)為設(shè)長(zhǎng)方形寬為,則長(zhǎng)為長(zhǎng)方形面積∴,解得(負(fù)值舍去)長(zhǎng)為即長(zhǎng)方形的長(zhǎng)大于正方形的邊長(zhǎng),所以不能裁出符合要求的長(zhǎng)方形紙片【點(diǎn)睛】本題主要考查的是算術(shù)平方根的性質(zhì),熟練掌握算術(shù)平方根的性質(zhì)是解題的關(guān)鍵.二、解答題6.(1)70°;(2),證明見(jiàn)解析;(3)122°【分析】(1)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過(guò)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過(guò)三角形內(nèi)角和得到,由角平分線解析:(1)70°;(2),證明見(jiàn)解析;(3)122°【分析】(1)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過(guò)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過(guò)三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過(guò)三角形內(nèi)角和求.【詳解】解:(1)過(guò)作,,,,,,故答案為:;(2).理由如下:過(guò)作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問(wèn)題的關(guān)鍵.7.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過(guò)點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過(guò)點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.解析:(1)見(jiàn)解析;(2)見(jiàn)解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過(guò)點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過(guò)點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過(guò)點(diǎn)M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過(guò)點(diǎn)H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵M(jìn)Q∥AB,∴∠BGM=∠GMQ,∵M(jìn)Q∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過(guò)點(diǎn)M作MQ∥AB,過(guò)點(diǎn)H作HP∥AB,由∠KFE:∠MGH=13:5,設(shè)∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)定理以及靈活構(gòu)造平行線是解題的關(guān)鍵.8.(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質(zhì):兩直線平行同旁內(nèi)角互補(bǔ)可得;(2)由平行線的性質(zhì)可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠解析:(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質(zhì):兩直線平行同旁內(nèi)角互補(bǔ)可得;(2)由平行線的性質(zhì)可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,當(dāng)∠ACB=∠ABD時(shí)有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)角平分線的定義可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行線的性質(zhì)可得∠A+∠ABN=90°,即可得出答案.【詳解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不變,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,當(dāng)∠ACB=∠ABD時(shí),則有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和角平分線的定義,熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.9.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過(guò)F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.10.(1)∠A+∠C+∠APC=360°;(2)見(jiàn)解析;(3)55°【分析】(1)首先過(guò)點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)見(jiàn)解析;(3)55°【分析】(1)首先過(guò)點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過(guò)點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.三、解答題11.(1)∠A+∠C=90°;(2)①見(jiàn)解析;②105°【分析】(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;(2)①過(guò)點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解;②先過(guò)點(diǎn)B作BG∥解析:(1)∠A+∠C=90°;(2)①見(jiàn)解析;②105°【分析】(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;(2)①過(guò)點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解;②先過(guò)點(diǎn)B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=15°,進(jìn)而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【詳解】解:(1)如圖1,AM與BC的交點(diǎn)記作點(diǎn)O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如圖2,過(guò)點(diǎn)B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,∴∠C=∠CBG,∠ABD=∠C;②如圖3,過(guò)點(diǎn)B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問(wèn)題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.12.(1)50°;(2)∠A+∠C=30°+α,理由見(jiàn)解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過(guò)M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見(jiàn)解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過(guò)M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,應(yīng)用四邊形的內(nèi)角和定理與平角的定義即可解決問(wèn)題.(3)分兩種情形分別求解即可;【詳解】解:(1)過(guò)M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案為:50°;(2)∠A+∠C=30°+α,延長(zhǎng)BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下圖所示:延長(zhǎng)BA、DC使之相交于點(diǎn)E,延長(zhǎng)MC與BA的延長(zhǎng)線相交于點(diǎn)F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的內(nèi)外角之間的關(guān)系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如圖所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.綜上所述,∠A-∠DCM=30°+α或30°-α.【點(diǎn)睛】本題考查了平行線的性質(zhì).解答該題時(shí),通過(guò)作輔助線準(zhǔn)確作出輔助線l∥AB,利用平行線的性質(zhì)(兩直線平行內(nèi)錯(cuò)角相等)將所求的角∠M與已知角∠A、∠C的數(shù)量關(guān)系聯(lián)系起來(lái),從而求得∠M的度數(shù).13.(1)見(jiàn)解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長(zhǎng)交于點(diǎn),根據(jù),,可得,所以,可得,又,進(jìn)而可得結(jié)論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再解析:(1)見(jiàn)解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長(zhǎng)交于點(diǎn),根據(jù),,可得,所以,可得,又,進(jìn)而可得結(jié)論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再根據(jù)比大,列出等式即可求的度數(shù);(3)如圖3,過(guò)點(diǎn)作,設(shè)直線和直線相交于點(diǎn),根據(jù)平行線的性質(zhì)和角平分線定義可求的度數(shù).【詳解】解:(1)證明:如圖1,延長(zhǎng)交于點(diǎn),,,,,,,,;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設(shè),,比大,,解得的度數(shù)為;(3)的度數(shù)不變,理由如下:如圖3,過(guò)點(diǎn)作,設(shè)直線和直線相交于點(diǎn),平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).14.(1),見(jiàn)解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,解析:(1),見(jiàn)解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,由(1)的結(jié)論得∠AFD=∠BAF+∠CDF,根據(jù)角平分線的定義得到∠BAF=∠BAE,∠CDF=∠CDE,則∠AFD=(∠BAE+∠CDE),加上(1)的結(jié)論得到∠AFD=∠AED;(3)由(1)的結(jié)論得∠AGD=∠BAF+∠CDG,利用折疊性質(zhì)得∠CDG=4∠CDF,再利用等量代換得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,從而可計(jì)算出∠BAE的度數(shù).【詳解】解:(1)理由如下:作,如圖1,,.,,;(2)如圖2,由(1)的結(jié)論得,、的兩條平分線交于點(diǎn)F,,,,,;(3)由(1)的結(jié)論得,而射線沿翻折交于點(diǎn)G,,,,,.【點(diǎn)睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.15.(1)見(jiàn)解析;(2);見(jiàn)解析;(3)【分析】(1)過(guò)點(diǎn)作,根據(jù)平行線性質(zhì)可得;(2)由(1)結(jié)論可得:,,再根據(jù)角平分線性質(zhì)可得;(3)由(2)結(jié)論可得:.【詳解】(1)證明:如圖1,過(guò)解析:(1)見(jiàn)解析;(2);見(jiàn)解析;(3)【分析】(1)過(guò)點(diǎn)作,根據(jù)平行線性質(zhì)可得;(2)由(1)結(jié)論可得:,,再根據(jù)角平分線性質(zhì)可得;(3)由(2)結(jié)論可得:.【詳解】(1)證明:如圖1,過(guò)點(diǎn)作,∵,∴,∴,,又∵,∴;(2)如圖2,由(1)可得:,,∵的平分線與的平分線相交于點(diǎn),∴,∴;(3)由(2)可得:,,∵,,∴,∴;【點(diǎn)睛】考核知識(shí)點(diǎn):平行線性質(zhì)和判定的綜合運(yùn)用.熟練運(yùn)用平行線性質(zhì)和判定是關(guān)鍵.四、解答題16.(1)①115°;110°;②;理由見(jiàn)解析;(2);理由見(jiàn)解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見(jiàn)解析;(2);理由見(jiàn)解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質(zhì)得出∠DGF=100°,再由三角形的外角性質(zhì)即可得出結(jié)果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質(zhì)即可得出結(jié)果;②由①得:∠EDB=∠C,,,由三角形的外角性質(zhì)得出∠DGF=∠B+∠BAG,再由三角形的外角性質(zhì)即可得出結(jié)論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質(zhì)、平行線的性質(zhì)等知識(shí);熟練掌握三角形內(nèi)角和定理和三角形的外角性質(zhì)是解題的關(guān)鍵.17.(1),理由詳見(jiàn)解析;(2),理由詳見(jiàn)解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個(gè)內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對(duì)頂角相等即可得出結(jié)解析:(1),理由詳見(jiàn)解析;(2),理由詳見(jiàn)解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個(gè)內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對(duì)頂角相等即可得出結(jié)論;(3)①根據(jù)角平分線的定義及三角形內(nèi)角和定理即可得出結(jié)論;②連結(jié)BE,由(2)的結(jié)論及四邊形內(nèi)角和為360°即可得出結(jié)論;(4)根據(jù)(1)的結(jié)論、角平分線的性質(zhì)以及三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1).理由如下:如圖1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分別平分和,,.故答案為:.②連結(jié).∵,.故答案為:;(4)由(1)知,,,,,,,,,,,;.【點(diǎn)睛】本題考查了角平分線的性質(zhì),三角形內(nèi)角和;熟練掌握角平分線的性質(zhì),進(jìn)行合理的等量代換是解題的關(guān)鍵.18.解決問(wèn)題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問(wèn)題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問(wèn)題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問(wèn)題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.試題解析:解:解決問(wèn)題連接AE.∵點(diǎn)D、E分別是邊AB、BC的中點(diǎn),∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.19.∠DPC=α+β,理由見(jiàn)解析;(1)70;(2)∠DPC=α–β,理由見(jiàn)解析.【解析】(1)過(guò)P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由見(jiàn)解析;(1)70;(2)∠DPC=α–β,理由見(jiàn)解析.【解析】(1)過(guò)P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論