2024屆湖南省長(zhǎng)沙青竹湖湘一外國(guó)語(yǔ)校中考數(shù)學(xué)考前最后一卷含解析_第1頁(yè)
2024屆湖南省長(zhǎng)沙青竹湖湘一外國(guó)語(yǔ)校中考數(shù)學(xué)考前最后一卷含解析_第2頁(yè)
2024屆湖南省長(zhǎng)沙青竹湖湘一外國(guó)語(yǔ)校中考數(shù)學(xué)考前最后一卷含解析_第3頁(yè)
2024屆湖南省長(zhǎng)沙青竹湖湘一外國(guó)語(yǔ)校中考數(shù)學(xué)考前最后一卷含解析_第4頁(yè)
2024屆湖南省長(zhǎng)沙青竹湖湘一外國(guó)語(yǔ)校中考數(shù)學(xué)考前最后一卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆湖南省長(zhǎng)沙青竹湖湘一外國(guó)語(yǔ)校中考數(shù)學(xué)考前最后一卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點(diǎn),E,F(xiàn)分別是AP,RP的中點(diǎn),當(dāng)點(diǎn)P在BC上從點(diǎn)B向點(diǎn)C移動(dòng)而點(diǎn)R不動(dòng)時(shí),那么下列結(jié)論成立的是().A.線段EF的長(zhǎng)逐漸增大 B.線段EF的長(zhǎng)逐漸減少C.線段EF的長(zhǎng)不變 D.線段EF的長(zhǎng)不能確定2.估計(jì)介于()A.0與1之間 B.1與2之間 C.2與3之間 D.3與4之間3.如圖是小強(qiáng)用八塊相同的小正方體搭建的一個(gè)積木,它的左視圖是()A. B. C. D.4.等腰三角形的兩邊長(zhǎng)分別為5和11,則它的周長(zhǎng)為()A.21 B.21或27 C.27 D.255.如圖,已知點(diǎn)A(0,1),B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸的正半軸于點(diǎn)C,則∠BAC等于()A.90° B.120° C.60° D.30°6.如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△OAB是邊長(zhǎng)為4的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△OA′B′,那么點(diǎn)A′的坐標(biāo)為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)7.如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.38.對(duì)于反比例函數(shù),下列說(shuō)法不正確的是()A.點(diǎn)(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當(dāng)x>0時(shí),y隨x的增大而增大 D.當(dāng)x<0時(shí),y隨x的增大而減小9.汽車剎車后行駛的距離s(單位:m)關(guān)于行駛的時(shí)間t(單位:s)的函數(shù)解析式是s=20t﹣5t2,汽車剎車后停下來(lái)前進(jìn)的距離是()A.10mB.20mC.30mD.40m10.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.若,AC=3,則CD的長(zhǎng)為A.6 B. C. D.3二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.某自然保護(hù)區(qū)為估計(jì)該地區(qū)一種珍稀鳥類的數(shù)量,先捕捉了20只,給它們做上標(biāo)記后放回,過(guò)一段時(shí)間待它們完全混合于同類后又捕捉了20只,發(fā)現(xiàn)其中有4只帶有標(biāo)記,從而估計(jì)該地區(qū)此種鳥類的數(shù)量大約有______只12.如圖,某數(shù)學(xué)興趣小組將邊長(zhǎng)為4的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細(xì)),則所得的扇形DAB的面積為__________.13.圓柱的底面半徑為1,母線長(zhǎng)為2,則它的側(cè)面積為_____.(結(jié)果保留π)14.對(duì)于函數(shù),我們定義(m、n為常數(shù)).例如,則.已知:.若方程有兩個(gè)相等實(shí)數(shù)根,則m的值為__________.15.某數(shù)學(xué)興趣小組在研究下列運(yùn)算流程圖時(shí)發(fā)現(xiàn),取某個(gè)實(shí)數(shù)范圍內(nèi)的x作為輸入值,則永遠(yuǎn)不會(huì)有輸出值,這個(gè)數(shù)學(xué)興趣小組所發(fā)現(xiàn)的實(shí)數(shù)x的取值范圍是_____.16.如圖,在網(wǎng)格中,小正方形的邊長(zhǎng)均為1,點(diǎn)A、B、O都在格點(diǎn)上,則∠OAB的正弦值是_____.三、解答題(共8題,共72分)17.(8分)已知:如圖,AB為⊙O的直徑,C是BA延長(zhǎng)線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過(guò)點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長(zhǎng).18.(8分)在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中的信息完成下列問(wèn)題:分組頻數(shù)頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計(jì)圖補(bǔ)充完整;如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?19.(8分)已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB分別與x軸、y軸交于點(diǎn)B,A,與反比例函數(shù)的圖象分別交于點(diǎn)C,D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數(shù)的解析式;(1)求三角形CDE的面積.20.(8分)某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:①該產(chǎn)品90天售量(n件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:時(shí)間(第x天)12310…日銷售量(n件)198196194?…②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:時(shí)間(第x天)1≤x<5050≤x≤90銷售價(jià)格(元/件)x+60100(1)求出第10天日銷售量;(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品的銷售利潤(rùn)最大?最大利潤(rùn)是多少?(提示:每天銷售利潤(rùn)=日銷售量×(每件銷售價(jià)格-每件成本))(3)在該產(chǎn)品銷售的過(guò)程中,共有多少天銷售利潤(rùn)不低于5400元,請(qǐng)直接寫出結(jié)果.21.(8分)“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)根據(jù)所給信息,解答以下問(wèn)題:(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是度;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在等級(jí);(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?22.(10分)如圖,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一點(diǎn)P,使PA+PB=BC;(尺規(guī)作圖,不寫作法,保留作圖痕跡)求BP的長(zhǎng).23.(12分)一定數(shù)量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學(xué)家把1,3,6,10,15,21,…,稱為“三角形數(shù)”;把1,4,9,16,25,…,稱為“正方形數(shù)”.將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:三角形數(shù)136101521a…正方形數(shù)1491625b49…五邊形數(shù)151222C5170…(1)按照規(guī)律,表格中a=___,b=___,c=___.(2)觀察表中規(guī)律,第n個(gè)“正方形數(shù)”是________;若第n個(gè)“三角形數(shù)”是x,則用含x、n的代數(shù)式表示第n個(gè)“五邊形數(shù)”是___________.24.如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過(guò)點(diǎn)A,EF與AC交于M點(diǎn).(1)求證:△ABE∽△ECM;(2)探究:在△DEF運(yùn)動(dòng)過(guò)程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;(3)當(dāng)線段AM最短時(shí),求重疊部分的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

因?yàn)镽不動(dòng),所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長(zhǎng)不變.【題目詳解】如圖,連接AR,∵E、F分別是AP、RP的中點(diǎn),∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長(zhǎng)不改變.故選:C.【題目點(diǎn)撥】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對(duì)應(yīng)的中位線的長(zhǎng)度就不變.2、C【解題分析】

解:∵,∴,即∴估計(jì)在2~3之間故選C.【題目點(diǎn)撥】本題考查估計(jì)無(wú)理數(shù)的大?。?、D【解題分析】

左視圖從左往右,2列正方形的個(gè)數(shù)依次為2,1,依此得出圖形D正確.故選D.【題目詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、C【解題分析】試題分析:分類討論:當(dāng)腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關(guān)系;當(dāng)腰取11,則底邊為5,根據(jù)等腰三角形的性質(zhì)得到另外一邊為11,然后計(jì)算周長(zhǎng).解:當(dāng)腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關(guān)系,所以這種情況不存在;當(dāng)腰取11,則底邊為5,則三角形的周長(zhǎng)=11+11+5=1.故選C.考點(diǎn):等腰三角形的性質(zhì);三角形三邊關(guān)系.5、C【解題分析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故選C.點(diǎn)睛:本題考查了垂徑定理的應(yīng)用,關(guān)鍵是求出AC、OA的長(zhǎng).解題時(shí)注意:垂直弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧.6、D【解題分析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點(diǎn)坐標(biāo)和O點(diǎn)坐標(biāo),再利用勾股定理計(jì)算出然后根據(jù)第二象限點(diǎn)的坐標(biāo)特征可寫出B點(diǎn)坐標(biāo);由旋轉(zhuǎn)的性質(zhì)得則點(diǎn)A′與點(diǎn)B重合,于是可得點(diǎn)A′的坐標(biāo).詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長(zhǎng)為4的等邊三角形∴∴A點(diǎn)坐標(biāo)為(?4,0),O點(diǎn)坐標(biāo)為(0,0),在Rt△BOC中,∴B點(diǎn)坐標(biāo)為∵△OAB按順時(shí)針?lè)较蛐D(zhuǎn),得到△OA′B′,∴∴點(diǎn)A′與點(diǎn)B重合,即點(diǎn)A′的坐標(biāo)為故選D.點(diǎn)睛:考查圖形的旋轉(zhuǎn),等邊三角形的性質(zhì).求解時(shí),注意等邊三角形三線合一的性質(zhì).7、C【解題分析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長(zhǎng).【題目詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【題目點(diǎn)撥】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.8、C【解題分析】

由題意分析可知,一個(gè)點(diǎn)在函數(shù)圖像上則代入該點(diǎn)必定滿足該函數(shù)解析式,點(diǎn)(-2,-1)代入可得,x=-2時(shí),y=-1,所以該點(diǎn)在函數(shù)圖象上,A正確;因?yàn)?大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因?yàn)?大于0,所以該函數(shù)在x>0時(shí),y隨x的增大而減小,所以C錯(cuò)誤;D中,當(dāng)x<0時(shí),y隨x的增大而減小,正確,故選C.考點(diǎn):反比例函數(shù)【題目點(diǎn)撥】本題屬于對(duì)反比例函數(shù)的基本性質(zhì)以及反比例函數(shù)的在各個(gè)象限單調(diào)性的變化9、B【解題分析】

利用配方法求二次函數(shù)最值的方法解答即可.【題目詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來(lái)前進(jìn)了20m.故選B.【題目點(diǎn)撥】此題主要考查了利用配方法求最值的問(wèn)題,根據(jù)已知得出頂點(diǎn)式是解題關(guān)鍵.10、D【解題分析】

解:因?yàn)锳B是⊙O的直徑,所以∠ACB=90°,又⊙O的直徑AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故選D.【題目點(diǎn)撥】本題考查圓的基本性質(zhì);垂經(jīng)定理及解直角三角形,綜合性較強(qiáng),難度不大.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解題分析】

求出樣本中有標(biāo)記的所占的百分比,再用樣本容量除以百分比即可解答.【題目詳解】解:

只.

故答案為:1.【題目點(diǎn)撥】本題考查的是通過(guò)樣本去估計(jì)總體,總體百分比約等于樣本百分比.12、【解題分析】

設(shè)扇形的圓心角為n°,則根據(jù)扇形的弧長(zhǎng)公式有:,解得所以13、4【解題分析】

根據(jù)圓柱的側(cè)面積公式,計(jì)算即可.【題目詳解】圓柱的底面半徑為r=1,母線長(zhǎng)為l=2,則它的側(cè)面積為S側(cè)=2πrl=2π×1×2=4π.故答案為:4π.【題目點(diǎn)撥】題考查了圓柱的側(cè)面積公式應(yīng)用問(wèn)題,是基礎(chǔ)題.14、【解題分析】分析:根據(jù)題目中所給定義先求,再利用根與系數(shù)關(guān)系求m值.詳解:由所給定義知,,若=0,解得m=.點(diǎn)睛:一元二次方程的根的判別式是,△=b2-4ac,a,b,c分別是一元二次方程中二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).

△>0說(shuō)明方程有兩個(gè)不同實(shí)數(shù)解,△=0說(shuō)明方程有兩個(gè)相等實(shí)數(shù)解,△<0說(shuō)明方程無(wú)實(shí)數(shù)解.實(shí)際應(yīng)用中,有兩種題型(1)證明方程實(shí)數(shù)根問(wèn)題,需要對(duì)△的正負(fù)進(jìn)行判斷,可能是具體的數(shù)直接可以判斷,也可能是含字母的式子,一般需要配方等技巧.15、【解題分析】

通過(guò)找到臨界值解決問(wèn)題.【題目詳解】由題意知,令3x-1=x,x=,此時(shí)無(wú)輸出值當(dāng)x>時(shí),數(shù)值越來(lái)越大,會(huì)有輸出值;當(dāng)x<時(shí),數(shù)值越來(lái)越小,不可能大于10,永遠(yuǎn)不會(huì)有輸出值故x≤,故答案為x≤.【題目點(diǎn)撥】本題考查不等式的性質(zhì),解題的關(guān)鍵是理解題意,學(xué)會(huì)找到臨界值解決問(wèn)題.16、【解題分析】

如圖,過(guò)點(diǎn)O作OC⊥AB的延長(zhǎng)線于點(diǎn)C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.三、解答題(共8題,共72分)17、(1)證明見解析(2)30°(3)QM=【解題分析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作OK⊥HB于點(diǎn)K,結(jié)合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結(jié)合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長(zhǎng)了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點(diǎn)P,又∵BQ⊥CP于點(diǎn)Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點(diǎn)E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設(shè)EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點(diǎn)睛:解本題第3小題的要點(diǎn)是:(1)作出如圖所示的輔助線,結(jié)合已知條件和(2)先求得BQ、BG的長(zhǎng)及∠CBQ=∠ABG=60°;(2)再過(guò)點(diǎn)G作GN⊥QB并交QB的延長(zhǎng)線于點(diǎn)N,解出BN和GN的長(zhǎng),這樣即可在Rt△QGN中求得QG的長(zhǎng),最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長(zhǎng)了.18、0.34【解題分析】

(1)由統(tǒng)計(jì)圖易得a與b的值,繼而將統(tǒng)計(jì)圖補(bǔ)充完整;(2)利用用樣本估計(jì)總體的知識(shí)求解即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選兩人正好都是甲班學(xué)生的情況,再利用概率公式即可求得答案.【題目詳解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵總?cè)藬?shù)為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為0.3,4;補(bǔ)全統(tǒng)計(jì)圖得:(2)估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結(jié)果,所選兩人正好都是甲班學(xué)生的有3種情況,∴所選兩人正好都是甲班學(xué)生的概率是:=.【題目點(diǎn)撥】本題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計(jì)圖的知識(shí).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1);(1)11.【解題分析】

(1)根據(jù)正切的定義求出OA,證明△BAO∽△BEC,根據(jù)相似三角形的性質(zhì)計(jì)算;(1)求出直線AB的解析式,解方程組求出點(diǎn)D的坐標(biāo),根據(jù)三角形CDE的面積=三角形CBE的面積+三角形BED的面積計(jì)算即可.【題目詳解】解:(1)∵tan∠ABO=,OB=4,∴OA=1,∵OE=1,∴BE=6,∵AO∥CE,∴△BAO∽△BEC,∴=,即=,解得,CE=3,即點(diǎn)C的坐標(biāo)為(﹣1,3),∴反比例函數(shù)的解析式為:;(1)設(shè)直線AB的解析式為:y=kx+b,則,解得,,則直線AB的解析式為:,,解得,,,∴當(dāng)D的坐標(biāo)為(6,1),∴三角形CDE的面積=三角形CBE的面積+三角形BED的面積=×6×3+×6×1=11.【題目點(diǎn)撥】此題考查的是反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,掌握待定系數(shù)法求函數(shù)解析式的一般步驟、求反比例函數(shù)與一次函數(shù)的交點(diǎn)的方法是解題的關(guān)鍵.20、(1)1件;(2)第40天,利潤(rùn)最大7200元;(3)46天【解題分析】試題分析:(1)根據(jù)待定系數(shù)法解出一次函數(shù)解析式,然后把x=10代入即可;(2)設(shè)利潤(rùn)為y元,則當(dāng)1≤x<50時(shí),y=﹣2x2+160x+4000;當(dāng)50≤x≤90時(shí),y=﹣120x+12000,分別求出各段上的最大值,比較即可得到結(jié)論;(3)直接寫出在該產(chǎn)品銷售的過(guò)程中,共有46天銷售利潤(rùn)不低于5400元.試題解析:解:(1)∵n與x成一次函數(shù),∴設(shè)n=kx+b,將x=1,m=198,x=3,m=194代入,得:,解得:,所以n關(guān)于x的一次函數(shù)表達(dá)式為n=-2x+200;當(dāng)x=10時(shí),n=-2×10+200=1.(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,y關(guān)于x的函數(shù)表達(dá)式為:當(dāng)1≤x<50時(shí),y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴當(dāng)x=40時(shí),y有最大值,最大值是7200;當(dāng)50≤x≤90時(shí),y=-120x+12000,∵-120<0,∴y隨x增大而減小,即當(dāng)x=50時(shí),y的值最大,最大值是6000;綜上所述:當(dāng)x=40時(shí),y的值最大,最大值是7200,即在90天內(nèi)該產(chǎn)品第40天的銷售利潤(rùn)最大,最大利潤(rùn)是7200元;(3)在該產(chǎn)品銷售的過(guò)程中,共有46天銷售利潤(rùn)不低于5400元.21、(1)117(2)見解析(3)B(4)30【解題分析】

(1)先根據(jù)B等級(jí)人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他等級(jí)人數(shù)求得C等級(jí)人數(shù),繼而用360°乘以C等級(jí)人數(shù)所占比例即可得;(2)根據(jù)以上所求結(jié)果即可補(bǔ)全圖形;(3)根據(jù)中位數(shù)的定義求解可得;(4)總?cè)藬?shù)乘以樣本中A等級(jí)人數(shù)所占比例可得.【題目詳解】解:(1)∵總?cè)藬?shù)為18÷45%=40人,∴C等級(jí)人數(shù)為40﹣(4+18+5)=13人,則C對(duì)應(yīng)的扇形的圓心角是360°×=117°,故答案為117;(2)補(bǔ)全條形圖如下:(3)因?yàn)楣灿?0個(gè)數(shù)據(jù),其中位數(shù)是第20、21個(gè)數(shù)據(jù)的平均數(shù),而第20、21個(gè)數(shù)據(jù)均落在B等級(jí),所以所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在B等級(jí),故答案為B.(4)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有300×=30人.【題目點(diǎn)撥】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.22、(1)見解析;(2)2.【解題分析】

(1)作AC的垂直平分線與BC相交于P;(2)根據(jù)勾股定理求解.【題目詳解】(1)如圖所示,點(diǎn)P即為所求.(2)設(shè)BP=x,則CP=1﹣x,由(1)中作圖知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論