版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
蘇州市吳中區(qū)市級名校2024屆中考數(shù)學押題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.2.點M(a,2a)在反比例函數(shù)y=的圖象上,那么a的值是()A.4 B.﹣4 C.2 D.±23.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD4.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數(shù)學知識是()A.兩點之間的所有連線中,線段最短B.經(jīng)過兩點有一條直線,并且只有一條直線C.直線外一點與直線上各點連接的所有線段中,垂線段最短D.經(jīng)過一點有且只有一條直線與已知直線垂直5.tan60°的值是()A. B. C. D.6.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數(shù)關系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.247.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°8.如圖,經(jīng)過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數(shù)為()A.99° B.109° C.119° D.129°9.若點M(﹣3,y1),N(﹣4,y2)都在正比例函數(shù)y=﹣k2x(k≠0)的圖象上,則y1與y2的大小關系是()A.y1<y2B.y1>y2C.y1=y2D.不能確定10.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,四邊形ABCD中,點P是對角線BD的中點,點E,F(xiàn)分別是AB,CD的中點,AD=BC,∠PEF=35°,則∠PFE的度數(shù)是_____.12.如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉一周.當△DCE一邊與AB平行時,∠ECB的度數(shù)為_________________________.13.點A(1,2),B(n,2)都在拋物線y=x2﹣4x+m上,則n=_____.14.如圖,反比例函數(shù)(x>0)的圖象與矩形OABC的邊長AB、BC分別交于點E、F且AE=BE,則△OEF的面積的值為.15.函數(shù)中,自變量x的取值范圍是.16.從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片(大小、形狀完全相同)中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是__________.三、解答題(共8題,共72分)17.(8分)(1)化簡:(2)解不等式組.18.(8分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點,交AC于E點,OC=OD.(1)若,DC=4,求AB的長;(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數(shù).19.(8分)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.20.(8分)列方程解應用題:為宣傳社會主義核心價值觀,某社區(qū)居委會計劃制作1200個大小相同的宣傳欄.現(xiàn)有甲、乙兩個廣告公司都具備制作能力,居委會派出相關人員分別到這兩個廣告公司了解情況,獲得如下信息:信息一:甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天;信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.根據(jù)以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?21.(8分)計算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201822.(10分)如圖,矩形ABCD繞點C順時針旋轉90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.23.(12分)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6,ADBD=224.當x取哪些整數(shù)值時,不等式與4﹣7x<﹣3都成立?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】
找到從正面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在主視圖中.【題目詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.
故選A.【題目點撥】本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.2、D【解題分析】
根據(jù)點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,然后解方程即可求解.【題目詳解】因為點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,,解得:,故選D.【題目點撥】本題主要考查反比例函數(shù)圖象的上點的特征,解決本題的關鍵是要熟練掌握反比例函數(shù)圖象上點的特征.3、D【解題分析】試題分析:對于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據(jù)AAS判定定理可以判定△POC≌△POD;對于BOC=OD,根據(jù)SAS判定定理可以判定△POC≌△POD;對于C,∠OPC=∠OPD,根據(jù)ASA判定定理可以判定△POC≌△POD;,對于D,PC=PD,無法判定△POC≌△POD,故選D.考點:角平分線的性質;全等三角形的判定.4、B【解題分析】
本題要根據(jù)過平面上的兩點有且只有一條直線的性質解答.【題目詳解】根據(jù)兩點確定一條直線.故選:B.【題目點撥】本題考查了“兩點確定一條直線”的公理,難度適中.5、A【解題分析】
根據(jù)特殊角三角函數(shù)值,可得答案.【題目詳解】tan60°=故選:A.【題目點撥】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.6、B【解題分析】過點A作AM⊥BC于點M,由題意可知當點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【題目點撥】本題考查了動點問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關鍵.7、B【解題分析】試題解析:∵AB∥CD,且∴在中,故選B.8、B【解題分析】
方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據(jù)平行線的性質求得∠ACF與∠BCF的度數(shù),∠ACF與∠BCF的和即為∠C的度數(shù).【題目詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【題目點撥】本題考查了方位角和平行線的性質,熟練掌握方位角的概念和平行線的性質是解題的關鍵.9、A【解題分析】
根據(jù)正比例函數(shù)的增減性解答即可.【題目詳解】∵正比例函數(shù)y=﹣k2x(k≠0),﹣k2<0,∴該函數(shù)的圖象中y隨x的增大而減小,∵點M(﹣3,y1),N(﹣4,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,﹣4<﹣3,∴y2>y1,故選:A.【題目點撥】本題考查了正比例函數(shù)圖象與系數(shù)的關系:對于y=kx(k為常數(shù),k≠0),當k>0時,y=kx的圖象經(jīng)過一、三象限,y隨x的增大而增大;當k<0時,y=kx的圖象經(jīng)過二、四象限,y隨x的增大而減小.10、A【解題分析】
原式變形后,利用平方差公式計算即可得出答案.【題目詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【題目點撥】此題考查了平方差公式,熟練掌握平方差公式是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、35°【解題分析】∵四邊形ABCD中,點P是對角線BD的中點,點E,F(xiàn)分別是AB,CD的中點,∴PE是△ABD的中位線,PF是△BDC的中位線,∴PE=AD,PF=BC,又∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=35°.故答案為35°.12、15°、30°、60°、120°、150°、165°【解題分析】分析:根據(jù)CD∥AB,CE∥AB和DE∥AB三種情況分別畫出圖形,然后根據(jù)每種情況分別進行計算得出答案,每種情況都會出現(xiàn)銳角和鈍角兩種情況.詳解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB時,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如圖1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB時,∠ECB=∠B=60°.③如圖2,DE∥AB時,延長CD交AB于F,則∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.點睛:本題主要考查的是平行線的性質與判定,屬于中等難度的題型.解決這個問題的關鍵就是根據(jù)題意得出圖形,然后分兩種情況得出角的度數(shù).13、1【解題分析】
根據(jù)題意可以求得m的值和n的值,由A的坐標,可確定B的坐標,進而可以得到n的值.【題目詳解】:∵點A(1,2),B(n,2)都在拋物線y=x2-4x+m上,
∴2=1-4+m2=n2-4n+m,
解得【題目點撥】本題考查了二次函數(shù)圖象上點的坐標特征,解題的關鍵是明確題意,利用二次函數(shù)的性質求解.14、【解題分析】試題分析:如圖,連接OB.∵E、F是反比例函數(shù)(x>0)的圖象上的點,EA⊥x軸于A,F(xiàn)C⊥y軸于C,∴S△AOE=S△COF=×1=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中點.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.15、且.【解題分析】試題分析:求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)二次根式被開方數(shù)必須是非負數(shù)和分式分母不為0的條件,要使在實數(shù)范圍內有意義,必須且.考點:1.函數(shù)自變量的取值范圍;2.二次根式和分式有意義的條件.16、1【解題分析】
根據(jù)概率的公式進行計算即可.【題目詳解】從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是15故答案為:15【題目點撥】考查概率的計算,明確概率的意義是解題的關鍵,概率等于所求情況數(shù)與總情況數(shù)的比.三、解答題(共8題,共72分)17、(1);(2)﹣2<x<1【解題分析】
(1)原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分即可得到結果;(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分即可.【題目詳解】(1)原式=;(2)不等式組整理得:,則不等式組的解集為﹣2<x<1.【題目點撥】此題考查計算能力,(1)考查分式的化簡,正確將分子與分母分解因式及按照正確運算順序進行計算是解題的關鍵;(2)是解不等式組,注意系數(shù)化為1時乘或除以的是負數(shù)時要變號.18、(1);(2)30°【解題分析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;
(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.【題目詳解】解:(1)∵AC的垂直平分線交BC于D點,交AC于E點,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)連接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切線,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中點,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等邊三角形,∴∠EDC=60°,∴∠C=30°.【題目點撥】考查了切線的性質、線段垂直平分線的性質、相似三角形的判定和性質、勾股定理、等邊三角形的判定和性質.解題的關鍵是連接OE,構造直角三角形.19、(1)45°.(1)MN1=ND1+DH1.理由見解析;(3)11.【解題分析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結論;(1)由旋轉的性質得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結論;(3)設正方形ABCD的邊長為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【題目詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設正方形ABCD的邊長為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長為11.【題目點撥】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質、勾股定理、正方形的性質等知識,難度適中.20、甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【解題分析】
設甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄,然后根據(jù)“甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天”列出方程求解即可.【題目詳解】解:設甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄.根據(jù)題意得:1200x解得:x=1.經(jīng)檢驗:x=1是原方程的解且符合實際問題的意義.∴1.2x=1.2×1=2.答:甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【題目點撥】此題考查了分式方程的應用,找出等量關系為兩廣告公司的工作時間的差為10天是解題的關鍵.21、-1【解題分析】
原式利用乘方的意義,特殊角的三角函數(shù)值,零指數(shù)冪法則計算即可求出值.【題目詳解】解:原式=﹣4+1+1+1=﹣1.【題目點撥】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.22、(1)見解析;(2)見解析.【解題分析】
(1)由旋轉性質可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,則HF=FG=AD,所以可證△ADM≌△MHF,結論可得.(2)作FN⊥DG垂足為N,且MF=FG,可得HN=GN,且DM=MH,可證2MN=DG,由第一問可得2MF=AF,由cosα=cos∠FMG=,代入可證結論成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 連鎖藥店營業(yè)款財務制度
- 國企項目部財務制度匯編
- 港股財務制度
- 公司商品財務制度
- 建立醫(yī)保財務制度
- 私募證券基金財務制度
- 軍休所管理制度
- 公司內部資料印刷制度
- 基礎雨天施工方案(3篇)
- 斜井地鐵施工方案(3篇)
- 廣東省佛山市南海區(qū)2025-2026學年上學期期末八年級數(shù)學試卷(含答案)
- 【地理】期末重點復習課件-2025-2026學年八年級地理上學期(人教版2024)
- 2026年鄉(xiāng)村治理體系現(xiàn)代化試題含答案
- 2026元旦主題班會:馬年猜猜樂新春祝福版 教學課件
- GB/T 43731-2024生物樣本庫中生物樣本處理方法的確認和驗證通用要求
- 河南中美鋁業(yè)有限公司登封市陳樓鋁土礦礦山地質環(huán)境保護與土地復墾方案
- 海南省定安縣龍河鎮(zhèn)大嶺建筑用花崗巖礦山 環(huán)評報告
- 大學生畢業(yè)論文寫作教程全套教學課件
- 110kV旗潘線π接入社旗陌陂110kV輸電線路施工方案(OPGW光纜)解析
- 王洪圖黃帝內經(jīng)80課時講稿
- 鼎甲異構數(shù)據(jù)同步軟件用戶手冊
評論
0/150
提交評論