2023-2024學年河北省行唐啟明中學高一上數(shù)學期末綜合測試模擬試題含解析_第1頁
2023-2024學年河北省行唐啟明中學高一上數(shù)學期末綜合測試模擬試題含解析_第2頁
2023-2024學年河北省行唐啟明中學高一上數(shù)學期末綜合測試模擬試題含解析_第3頁
2023-2024學年河北省行唐啟明中學高一上數(shù)學期末綜合測試模擬試題含解析_第4頁
2023-2024學年河北省行唐啟明中學高一上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023-2024學年河北省行唐啟明中學高一上數(shù)學期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.已知函數(shù)是定義域為奇函數(shù),當時,,則不等式的解集為A. B.C. D.2.已知直線、、與平面、,下列命題正確的是()A若,則 B.若,則C.若,則 D.若,則3.已知集合A. B.C. D.4.將函數(shù)的圖象向左平移個單位長度,再向下平移個單位長度,得到函數(shù)的圖象,那么可以取的值為()A. B.C. D.5.已知直線,圓.點為直線上的動點,過點作圓的切線,切點分別為.當四邊形面積最小時,直線方程是()A. B.C. D.6.定義在上的偶函數(shù)的圖象關于直線對稱,當時,.若方程且根的個數(shù)大于3,則實數(shù)的取值范圍為()A. B.C. D.7.下列函數(shù)是偶函數(shù)的是()A. B.C. D.8.已知,并且是終邊上一點,那么的值等于A. B.C. D.9.命題“,”的否定是A., B.,C., D.,10.如圖是某班名學生身高的頻率分布直方圖,那么該班身高在區(qū)間內(nèi)的學生人數(shù)為A. B.C. D.11.已知向量,,若,則()A. B.C.2 D.312.設,則A. B.C. D.二、填空題(本大題共4小題,共20分)13.直線與直線關于點對稱,則直線方程為______.14.若是冪函數(shù)且在單調(diào)遞增,則實數(shù)_______.15.已知等差數(shù)列的前項和為,,則__________16.已知f(x)是定義在R上的奇函數(shù)且以6為周期,若f(2)=0,則f(x)在區(qū)間(0,10)內(nèi)至少有________零點.三、解答題(本大題共6小題,共70分)17.已知,,()求及()若的最小值是,求的值18.已知函數(shù)(1)寫出函數(shù)單調(diào)遞減區(qū)間和其圖象的對稱軸方程;(2)用五點法作圖,填表并作出在圖象.xy19.已知函數(shù).(1)求的最小正周期和單調(diào)遞增區(qū)間;(2)求在區(qū)間的最大值和最小值20.已知函數(shù)(I)求函數(shù)圖象的對稱軸方程;(II)求函數(shù)的最小正周期和值域.21.已知.(1)求的值;(2)求的值.22.如圖所示,已知直角梯形ABCD,BC∥AD,∠ABC=90°,AB=5cm,BC=16cm,AD=4cm.求以AB所在直線為軸旋轉(zhuǎn)一周所得幾何體的表面積

參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】根據(jù)題意,由函數(shù)的解析式分析可得在為增函數(shù)且,結(jié)合函數(shù)的奇偶性分析可得在上為增函數(shù),又由,則有,解可得的取值范圍,即可得答案.【詳解】根據(jù)題意,當時,,則在為增函數(shù)且,又由是定義在上的奇函數(shù),則在上也為增函數(shù),則在上為增函數(shù),由,則有,解得:,即不等式的解集為;故選:A【點睛】本題考查函數(shù)奇偶性與單調(diào)性結(jié)合,解抽象函數(shù)不等式,有一定難度.2、D【解析】利用線線,線面,面面的位置關系,以及垂直,平行的判斷和性質(zhì)判斷選項.【詳解】A.若,則或異面,故A不正確;B.缺少垂直于交線這個條件,不能推出,故B不正確;C.由垂直關系可知,或相交,或是異面,故C不正確;D.因,所以平面內(nèi)存在直線,若,則,且,所以,故D正確.故選:D3、D【解析】由已知,所以考點:集合的運算4、B【解析】寫出平移變換后的函數(shù)解析式,將函數(shù)的解析式利用二倍角公式降冪,化為正弦型函數(shù),進而可得出的表達式,利用賦特殊值可得出結(jié)果.【詳解】將函數(shù)的圖象向左平移個單位長度,再向下平移個單位長度,所得圖象對應的函數(shù)的解析式為,,,解得,當時,.故選:B.【點睛】本題考查利用三角函數(shù)圖象變換求參數(shù),解題的關鍵就是結(jié)合圖象變換求出變換后所得函數(shù)的解析式,考查計算能力,屬于中等題.5、B【解析】求得點C到直線l的距離d,根據(jù),等號成立時,求得點P,進而求得過的圓的方程,與已知圓的方程聯(lián)立求解.【詳解】設點C到直線l的距離為,由,此時,,方程為,即,與直線聯(lián)立得,因為共圓,其圓心為,半徑為,圓的方程為,與聯(lián)立,化簡整理得,答案:B6、D【解析】由題設,可得解析式且為周期為4的函數(shù),再將問題轉(zhuǎn)化為與交點個數(shù)大于3個,討論參數(shù)a判斷交點個數(shù),進而畫出和的圖象,應用數(shù)形結(jié)合法有符合題設,即可求范圍.【詳解】由題設,,即,所以是周期為4的函數(shù),若,則,故,所以,要使且根的個數(shù)大于3,即與交點個數(shù)大于3個,又恒過,當時,在上,在上且在上遞減,此時與只有一個交點,所以.綜上,、的圖象如下所示,要使交點個數(shù)大于3個,則,可得.故選:D【點睛】關鍵點點睛:根據(jù)已知條件分析出的周期性,并求出上的解析式,將問題轉(zhuǎn)化為兩個函數(shù)的交點個數(shù)問題,結(jié)合對數(shù)函數(shù)的性質(zhì)分析a的范圍,最后根據(jù)交點個數(shù)情況,應用數(shù)形結(jié)合進一步縮小參數(shù)的范圍.7、D【解析】利用偶函數(shù)的性質(zhì)對每個選項判斷得出結(jié)果【詳解】A選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù),A選項錯誤B選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù)C選項:函數(shù)定義域為,,故函數(shù)為奇函數(shù)D選項:函數(shù)定義域為,,故函數(shù)是偶函數(shù)故選D【點睛】本題考查函數(shù)奇偶性的定義,在證明函數(shù)奇偶性時需注意函數(shù)的定義域;還需掌握:奇函數(shù)加減奇函數(shù)為奇函數(shù);偶函數(shù)加減偶函數(shù)為偶函數(shù);奇函數(shù)加減偶函數(shù)為非奇非偶函數(shù);奇函數(shù)乘以奇函數(shù)為偶函數(shù);奇函數(shù)乘以偶函數(shù)為奇函數(shù);偶函數(shù)乘以偶函數(shù)為偶函數(shù)8、A【解析】由題意得:,選A.9、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點:全稱命題與特稱命題10、C【解析】身高在區(qū)間內(nèi)的頻率為人數(shù)為,選C.點睛:頻率分布直方圖中小長方形面積等于對應區(qū)間的概率,所有小長方形面積之和為1;頻率分布直方圖中組中值與對應區(qū)間概率乘積的和為平均數(shù);頻率分布直方圖中小長方形面積之比等于對應概率之比,也等于對應頻數(shù)之比.11、A【解析】先計算的坐標,再利用可得,即可求解.【詳解】,因為,所以,解得:,故選:A12、B【解析】因為,所以.選B二、填空題(本大題共4小題,共20分)13、【解析】由題意可知,直線應與直線平行,可設直線方程為,由于兩條至直線關于點對稱,可通過計算點分別到兩條直線的距離,通過距離相等,即可求解出,完成方程的求解.【詳解】解:由題意可設直線的方程為,則,解得或舍去,故直線的方程為故答案為:.14、2【解析】由冪函數(shù)可得,解得或2,檢驗函數(shù)單調(diào)性求解即可.【詳解】為冪函數(shù),所以,解得或2.當時,,在不單調(diào)遞增,舍去;當時,,在單調(diào)遞增成立.故答案為.【點睛】本題主要考查了冪函數(shù)的定義及單調(diào)性,屬于基礎題.15、161【解析】由等差數(shù)列的性質(zhì)可得,即可求出,又,帶入數(shù)據(jù),即可求解【詳解】由等差數(shù)列的性質(zhì)可得=,所以,又由等差數(shù)列前n項和公式得【點睛】本題考查等差數(shù)列的性質(zhì)及前n項和公式,屬基礎題16、6【解析】直接利用f(x)的奇偶性和周期性求解.【詳解】因為f(x)是定義在R上奇函數(shù)且以6為周期,所以f(x)=-f即f-x所以f(x)的圖象關于3,0對稱,且f3則f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在區(qū)間(0,10)內(nèi)至少有6個零點.故答案為:6個零點三、解答題(本大題共6小題,共70分)17、(1);(2).【解析】(1)利用平面向量的數(shù)量積公式、模長公式求解;(2)將的值域,轉(zhuǎn)化為關于的一元二次函數(shù)的值域,根據(jù)【詳解】(1),,(2),,,,當時,當且僅當時,取最小值,解得;當時,當且僅當時,取最小值,解得(舍);當時,當且僅當時,取最小值,解得(舍去),綜上所述,.【點睛】本題主要考查求平面向量的數(shù)量積,向量的模,以及由函數(shù)的最值求參數(shù)的問題,熟記平面向量數(shù)量積的坐標表示,向量模的坐標表示,以及三角函數(shù)的性質(zhì)即可,屬于常考題型.18、(1)遞減區(qū)間,對稱軸方程:;(2)見解析【解析】(1)由正弦型函數(shù)的單調(diào)性與對稱性即可求得的單調(diào)區(qū)間與對稱軸;(2)根據(jù)五點作圖法規(guī)則補充表格,然后在所給坐標中描出所取五點,以光滑曲線連接即可.【詳解】(1)令,解得,令,解得,所以函數(shù)的遞減區(qū)間為,對稱軸方程:;(2)0xy131-11【點睛】本題考查正弦型函數(shù)的單調(diào)性與對稱性,五點法作正(余)弦型函數(shù)的圖像,屬于基礎題.19、(1)最小正周期為,單調(diào)遞增區(qū)間;(2)在上的最大值為,最小值為.【解析】(1)由正弦型函數(shù)的性質(zhì),應用整體代入法有時單調(diào)遞增求增區(qū)間,由求最小正周期即可.(2)由已知區(qū)間確定的區(qū)間,進而求的最大值和最小值【詳解】(1)由三角函解析式知:最小正周期為,令,得,∴單調(diào)遞增區(qū)間為,(2)在上,有,∴當時取最小值,當時取最大值為.20、(I)(II)周期為,值域為【解析】(I)化簡得,進而可求解(II)化簡,進而可求解【詳解】(I)因為,,所以,由得,對稱軸為(II)因為,所以,,周期為,值域為【點睛】方法點睛:需要利用三角公式“化一”,進一步研究正弦型函數(shù)的圖象和性質(zhì),達到解題目的21、(1);(2)【解析】(1)根據(jù)正切的差角公式求得,再利用正切的二倍角公式可求得答案;(2)根據(jù)同角三角函數(shù)的關系和正弦,余弦的二倍角公式,代入可得答案【詳解】(1)因為,所以,即,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論