版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山東省平原縣第一中學(xué)高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知集合A={0,1},B={-1,0},則A∩B=()A.0, B.C. D.2.Logistic模型是常用數(shù)學(xué)模型之一,可應(yīng)用于流行病學(xué)領(lǐng)域.有學(xué)者根據(jù)公布數(shù)據(jù)建立了某地區(qū)新冠肺炎累計確診病例數(shù)(的單位:天)的Logistic模型:其中為最大確診病例數(shù).當(dāng)時,標(biāo)志著已初步遏制疫情,則約為()A.60 B.65C.66 D.693.已知,且,則的值為()A. B.C. D.4.已知扇形的圓心角為,面積為,則扇形的弧長等于(
)A. B.C. D.5.若定義運算,則函數(shù)的值域是()A.(-∞,+∞) B.[1,+∞)C.(0.+∞) D.(0,1]6.已知,,,則A. B.C. D.7.終邊在x軸上的角的集合為()A. B.C. D.8.下列關(guān)系中,正確的是()A. B.C D.9.已知,則的大小關(guān)系是A. B.C. D.10.設(shè)是定義在上的奇函數(shù),且當(dāng)時,,則()A. B.C. D.11.設(shè)函數(shù)與的圖象的交點為,則所在的區(qū)間為()A B.C. D.12.函數(shù)f(x)=x2-3x-4的零點是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù)若,則實數(shù)___________.14.計算:()0+_____15.已知扇形OAB的面積為,半徑為3,則圓心角為_____16.已知對于任意x,y均有,且時,,則是_____(填奇或偶)函數(shù)三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.將函數(shù)(且)的圖象向左平移1個單位,再向上平移2個單位,得到函數(shù)的圖象,(1)求函數(shù)的解析式;(2)設(shè)函數(shù),若對一切恒成立,求實數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有且僅有一個零點,求實數(shù)的取值范圍.18.設(shè)A是實數(shù)集的非空子集,稱集合且為集合A的生成集(1)當(dāng)時,寫出集合A的生成集B;(2)若A是由5個正實數(shù)構(gòu)成的集合,求其生成集B中元素個數(shù)的最小值;(3)判斷是否存在4個正實數(shù)構(gòu)成的集合A,使其生成集,并說明理由19.某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x萬件,其總成本為萬元,其中固定成本為3萬元,并且每生產(chǎn)1萬件的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:(1)寫出利潤函數(shù)的解析式(利潤=銷售收入?總成本);(2)工廠生產(chǎn)多少萬件產(chǎn)品時,可使盈利最多?20.已知函數(shù),,且.(1)求實數(shù)m的值,并求函數(shù)有3個不同的零點時實數(shù)b的取值范圍;(2)若函數(shù)在區(qū)間上為增函數(shù),求實數(shù)a取值范圍.21.已知是定義在上的奇函數(shù),,當(dāng)時的解析式為.(1)寫出在上的解析式;(2)求在上的最值.22.英國數(shù)學(xué)家泰勒發(fā)現(xiàn)了如下公式:,其中,此公式有廣泛的用途,例如利用公式得到一些不等式:當(dāng)時,,.(1)證明:當(dāng)時,;(2)設(shè),若區(qū)間滿足當(dāng)定義域為時,值域也為,則稱為的“和諧區(qū)間”.(i)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由;(ii)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】利用交集定義直接求解【詳解】解:∵集合A={0,1},B={-1,0},∴A∩B={0}故選B【點睛】本題考查交集的求法,考查交集定義,是基礎(chǔ)題2、B【解析】由已知可得方程,解出即可【詳解】解:由已知可得,解得,兩邊取對數(shù)有,解得.故選:B3、B【解析】先通過誘導(dǎo)公式把轉(zhuǎn)化成,再結(jié)合平方關(guān)系求解.【詳解】,又,.故選:B.4、C【解析】根據(jù)圓心角可以得出弧長與半徑的關(guān)系,根據(jù)面積公式可得出弧長【詳解】由題意可得,所以【點睛】本題考查扇形的面積公式、弧長公式,屬于基礎(chǔ)題5、D【解析】作出函數(shù)的圖像,結(jié)合圖像即可得出結(jié)論.【詳解】由題意分析得:取函數(shù)與中的較小的值,則,如圖所示(實線部分):由圖可知:函數(shù)的值域為:.故選:D.【點睛】本題主要考查了指數(shù)函數(shù)的性質(zhì)和應(yīng)用.考查了數(shù)形結(jié)合思想.屬于較易題.6、A【解析】故選7、B【解析】利用任意角的性質(zhì)即可得到結(jié)果【詳解】終邊在x軸上,可能為x軸正半軸或負半軸,所以可得角,故選B.【點睛】本題考查任意角的定義,屬于基礎(chǔ)題.8、B【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)正弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷C,根據(jù)余弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷D;【詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調(diào)遞減,因為,所以,又,,因為在上單調(diào)遞增,所以,所以,所以,故B正確;對于C:因為在上單調(diào)遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調(diào)遞減,又,所以,又,所以,故D錯誤;故選:B9、B【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性以及對數(shù)函數(shù)的單調(diào)性分別判斷出的取值范圍,從而可得結(jié)果.【詳解】,,,,故選B.【點睛】本題主要考查對數(shù)函數(shù)的性質(zhì)、指數(shù)函數(shù)的單調(diào)性及比較大小問題,屬于難題.解答比較大小問題,常見思路有兩個:一是判斷出各個數(shù)值所在區(qū)間(一般是看三個區(qū)間);二是利用函數(shù)的單調(diào)性直接解答;數(shù)值比較多的比大小問題也可以兩種方法綜合應(yīng)用.10、D【解析】根據(jù)奇函數(shù)的性質(zhì)求函數(shù)值即可.【詳解】故選:D11、C【解析】令,則,故的零點在內(nèi),因此兩函數(shù)圖象交點在內(nèi),故選C.【方法點睛】本題主要考查函數(shù)圖象的交點與函數(shù)零點的關(guān)系、零點存在定理的應(yīng)用,屬于中檔題.零點存在性定理的條件:(1)利用定理要求函數(shù)在區(qū)間上是連續(xù)不斷的曲線;(2)要求;(3)要想判斷零點個數(shù)還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性).12、D【解析】直接利用函數(shù)零點定義,解即可.【詳解】由,解得或,函數(shù)零點是.故選:.【點睛】本題主要考查的是函數(shù)零點的求法,直接利用定義可以求解,是基礎(chǔ)題.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、2【解析】先計算,再計算即得解.【詳解】解:,所以.故答案為:214、【解析】根據(jù)根式、指數(shù)和對數(shù)運算化簡所求表達式.【詳解】依題意,原式.故答案為:【點睛】本小題主要考查根式、指數(shù)和對數(shù)運算,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.15、【解析】直接利用扇形的面積公式得到答案.【詳解】故答案為:【點睛】本題考查了扇形面積的計算,屬于簡單題.16、奇函數(shù)【解析】賦值,可求得,再賦值即可得到,利用奇偶性的定義可判斷奇偶性;【詳解】,令,得,,再令,得,是上的奇函數(shù);【點睛】本題考查了賦值法及奇函數(shù)的定義三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)(2)(3)【解析】(1)由圖象的平移特點可得所求函數(shù)的解析式;(2)求得的解析式,可得對一切恒成立,再由二次函數(shù)的性質(zhì)可得所求范圍;(3)將化簡為,由題意可得只需在區(qū)間,,上有唯一解,利用圖象,數(shù)形結(jié)合求得答案.【小問1詳解】將函數(shù)且的圖象向左平移1個單位,得到的圖象,再向上平移2個單位,得到函數(shù)的圖象,即:;【小問2詳解】函數(shù),,若對一切恒成立,則對一切恒成立,由在遞增,可得,所以,即的取值范圍是,;【小問3詳解】關(guān)于的方程且,故函數(shù)在區(qū)間上有且僅有一個零點,等價于在區(qū)間上有唯一解,作出函數(shù)且的圖象,如圖示:當(dāng)時,方程的解有且只有1個,故實數(shù)p的取值范圍是.18、(1)(2)7(3)不存在,理由見解析【解析】(1)利用集合的生成集定義直接求解.(2)設(shè),且,利用生成集的定義即可求解;(3)不存在,理由反證法說明.【小問1詳解】,【小問2詳解】設(shè),不妨設(shè),因為,所以中元素個數(shù)大于等于7個,又,,此時中元素個數(shù)大于等于7個,所以生成集B中元素個數(shù)的最小值為7.【小問3詳解】不存在,理由如下:假設(shè)存在4個正實數(shù)構(gòu)成的集合,使其生成集,不妨設(shè),則集合A的生成集則必有,其4個正實數(shù)的乘積;也有,其4個正實數(shù)乘積,矛盾;所以假設(shè)不成立,故不存在4個正實數(shù)構(gòu)成的集合A,使其生成集【點睛】關(guān)鍵點點睛:本題考查集合的新定義,解題的關(guān)鍵是理解集合A的生成集的定義,考查學(xué)生的分析解題能力,屬于較難題.19、(1)(2)4萬件【解析】(1)由題意,總成本,由即可得利潤函數(shù)解析式;(2)根據(jù)反比例函數(shù)及二次函數(shù)的單調(diào)性,求出分段函數(shù)的最大值即可求解.【小問1詳解】解:由題意,總成本,因為銷售收入滿足,所以利潤函數(shù);小問2詳解】解:當(dāng)時,因為函數(shù)單調(diào)遞減,所以萬元;當(dāng)時,函數(shù),所以當(dāng)時,有最大值為13(萬元).所以當(dāng)工廠生產(chǎn)4萬件產(chǎn)品時,可使盈利最多為13萬元.20、(1)..(2)【解析】(1)由求得,作出函數(shù)圖象可知的范圍;(2)由函數(shù)圖象可知區(qū)間所屬范圍,列不等式示得結(jié)論【詳解】(1)因為,所以.函數(shù)的大致圖象如圖所示令,得.故有3個不同的零點.即方程有3個不同的實根.由圖可知.(2)由圖象可知,函數(shù)在區(qū)間和上分別單調(diào)遞增.因為,且函數(shù)在區(qū)間上為增函數(shù),所以可得,解得.所以實數(shù)a的取值范圍為.【點睛】本題考查由函數(shù)值求參數(shù),考查分段函數(shù)的圖象與性質(zhì).考查零點個數(shù)問題與轉(zhuǎn)化思想.屬于中檔題21、(1)(2)最大值為0,最小值為【解析】(1)先求得參數(shù),再依據(jù)奇函數(shù)性質(zhì)即可求得在上的解析式;(2)轉(zhuǎn)化為二次函數(shù)在給定區(qū)間求值域即可解決.【小問1詳解】因為是定義在上的奇函數(shù),所以,即,由,得,由,解得,則當(dāng)時,函數(shù)解析式為設(shè),則,,即當(dāng)時,【小問2詳解】當(dāng)時,,所以當(dāng),即時,的最大值為0,當(dāng),即時,的最小值為.22、(1)證明見解析(2)(i)不存在“和諧區(qū)間”,理由見解析(ii)存在,有唯一的“和諧區(qū)間”【解析】(1)利用來證得結(jié)論成立.(2)(i)通過證明方程只有一個實根來判斷出此時不存在“和諧區(qū)間”.(ii)對的取值進行分類討論,結(jié)合的單調(diào)性以及(1)的結(jié)論求得唯一的“和諧區(qū)間”.【小問1詳解】由已知當(dāng)時,,得,所以當(dāng)時,.【小問2詳解】(i)時,假設(shè)存在,則由知,注意到,故,所以在單調(diào)遞增,于是,即是方程的兩個不等實根,易知不是方程的根,由已知,當(dāng)時,,令,則有時,,即,故方程只有一個實根0,故不存在“和諧區(qū)間”.(ii)時,假設(shè)存在,則由知若,則由,知,與值域是矛盾,故不存在“和諧區(qū)間”,同理,時,也不存在,下面討論,若,則,故最小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 跨境電商2025年知識產(chǎn)權(quán)授權(quán)協(xié)議
- 程序設(shè)計考試題庫及答案
- 2025-2026人教版七年級語文上期末卷
- 2026年重點高中自主招生考試英語試卷試題(含答案+答題卡)
- 2025-2026一年級體育期末測試卷
- 用養(yǎng)結(jié)合輪作制度-編制說明
- 美容店安全衛(wèi)生管理制度
- 衛(wèi)生院內(nèi)部治安保衛(wèi)制度
- 衛(wèi)生院實行工資制度
- 衛(wèi)生院戒煙門診工作制度
- DB21-T 4279-2025 黑果腺肋花楸農(nóng)業(yè)氣象服務(wù)技術(shù)規(guī)程
- 2026廣東廣州市海珠區(qū)住房和建設(shè)局招聘雇員7人考試參考試題及答案解析
- 2026新疆伊犁州新源縣總工會面向社會招聘工會社會工作者3人考試備考題庫及答案解析
- 廣東省汕頭市2025-2026學(xué)年高三上學(xué)期期末語文試題(含答案)(含解析)
- 110接處警課件培訓(xùn)
- DB15∕T 385-2025 行業(yè)用水定額
- 火箭軍教學(xué)課件
- 新媒體運營專員筆試考試題集含答案
- 護理不良事件之血標(biāo)本采集錯誤分析與防控
- 心臟電生理檢查操作標(biāo)準(zhǔn)流程
- 盾構(gòu)構(gòu)造與操作維護課件 2 盾構(gòu)構(gòu)造與操作維護課件-盾構(gòu)刀盤刀具及回轉(zhuǎn)中心
評論
0/150
提交評論