版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024學(xué)年甘肅省甘南重點中學(xué)中考數(shù)學(xué)適應(yīng)性模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數(shù)為()A.125° B.135° C.145° D.155°2.一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲乙兩地之間的距離為1000千米,兩車同時出發(fā),則圖中折線大致表示兩車之間的距離(千米)與快車行駛時間t(小時)之間的函數(shù)圖象是A. B.C. D.3.如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點C與點F重合時停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.4.已知圖中所有的小正方形都全等,若在右圖中再添加一個全等的小正方形得到新的圖形,使新圖形是中心對稱圖形,則正確的添加方案是()A. B. C. D.5.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為()A. B.2 C. D.26.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=26°,則∠OBC的度數(shù)為()A.54° B.64° C.74° D.26°7.如圖,在正方形ABCD中,E為AB的中點,G,F(xiàn)分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.58.若關(guān)于的一元二次方程的一個根是0,則的值是()A.1 B.-1 C.1或-1 D.9.如圖,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為()A.O1 B.O2 C.O3 D.O410.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個11.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設(shè)正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是()A. B. C. D.12.某公園有A、B、C、D四個入口,每個游客都是隨機從一個入口進入公園,則甲、乙兩位游客恰好從同一個入口進入公園的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知二次函數(shù)的圖象如圖所示,有下列結(jié)論:,,;,,其中正確的結(jié)論序號是______14.如圖,在正六邊形ABCDEF的上方作正方形AFGH,聯(lián)結(jié)GC,那么的正切值為___.15.如圖,這是一幅長為3m,寬為1m的長方形世界杯宣傳畫,為測量宣傳畫上世界杯圖案的面積,現(xiàn)將宣傳畫平鋪在地上,向長方形宣傳畫內(nèi)隨機投擲骰子(假設(shè)骰子落在長方形內(nèi)的每一點都是等可能的),經(jīng)過大量重復(fù)投擲試驗,發(fā)現(xiàn)骰子落在世界杯圖案中的頻率穩(wěn)定在常數(shù)0.4附近,由此可估計宣傳畫上世界杯圖案的面積約為___________________m1.16.已知反比例函數(shù),在其圖象所在的每個象限內(nèi),的值隨的值增大而減小,那么它的圖象所在的象限是第__________象限.17.如圖,在矩形ABCD中,AB=3,AD=5,點E在DC上,將矩形ABCD沿AE折疊,點D恰好落在BC邊上的點F處,那么cos∠EFC的值是.18.若反比例函數(shù)y=的圖象在每一個象限中,y隨著x的增大而減小,則m的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風(fēng)扇,表中是近兩周的銷售情況:銷售時段銷售數(shù)量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A,B兩種型號的電風(fēng)扇的銷售單價.(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,則A種型號的電風(fēng)扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.20.(6分)吳京同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對一個新函數(shù)y=的圖象和性質(zhì)進行了如下探究,請幫他把探究過程補充完整該函數(shù)的自變量x的取值范圍是.列表:x…﹣2﹣10123456…y…m﹣1﹣5n﹣1…表中m=,n=.描點、連線在下面的格點圖中,建立適當(dāng)?shù)钠矫嬷苯亲鴺讼祒Oy中,描出上表中各對對應(yīng)值為坐標的點(其中x為橫坐標,y為縱坐標),并根據(jù)描出的點畫出該函數(shù)的圖象:觀察所畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì):①;②.21.(6分)計算:2﹣1+|﹣|++2cos30°22.(8分)如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.23.(8分)先化簡,再求值:,其中a滿足a2+2a﹣1=1.24.(10分)解分式方程:x+1x-1-25.(10分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點D為邊BC上的動點,連接AD以AD為直徑作⊙O交邊AB、AC分別于點E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.26.(12分)在眉山市櫻花節(jié)期間,岷江二橋一端的空地上有一塊矩形的標語牌ABCD(如圖).已知標語牌的高AB=5m,在地面的點E處,測得標語牌點A的仰角為30°,在地面的點F處,測得標語牌點A的仰角為75°,且點E,F(xiàn),B,C在同一直線上,求點E與點F之間的距離.(計算結(jié)果精確到0.1m,參考數(shù)據(jù):≈1.41,≈1.73)27.(12分)某天,甲、乙、丙三人一起乘坐公交車,他們上車時發(fā)現(xiàn)公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】分析:如圖求出∠5即可解決問題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選:A.點睛:本題考查平行線的性質(zhì)、三角形內(nèi)角和定理,鄰補角的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.2、C【解題分析】分三段討論:①兩車從開始到相遇,這段時間兩車距迅速減?。虎谙嘤龊笙蛳喾捶较蛐旭傊撂乜斓竭_甲地,這段時間兩車距迅速增加;③特快到達甲地至快車到達乙地,這段時間兩車距緩慢增大;結(jié)合圖象可得C選項符合題意.故選C.3、A【解題分析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四邊形DEFG為矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此題有三種情況:(1)當(dāng)0<x<2時,AB交DE于H,如圖∵DE∥AC,∴,即,解得:EH=x,所以y=?x?x=x2,∵x、y之間是二次函數(shù),所以所選答案C錯誤,答案D錯誤,∵a=>0,開口向上;(2)當(dāng)2≤x≤6時,如圖,此時y=×2×2=2,(3)當(dāng)6<x≤8時,如圖,設(shè)△ABC的面積是s1,△FNB的面積是s2,BF=x﹣6,與(1)類同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴開口向下,所以答案A正確,答案B錯誤,故選A.點睛:本題考查函數(shù)的圖象.在運動的過程中正確區(qū)分函數(shù)圖象是解題的關(guān)鍵.4、B【解題分析】
觀察圖形,利用中心對稱圖形的性質(zhì)解答即可.【題目詳解】選項A,新圖形不是中心對稱圖形,故此選項錯誤;選項B,新圖形是中心對稱圖形,故此選項正確;選項C,新圖形不是中心對稱圖形,故此選項錯誤;選項D,新圖形不是中心對稱圖形,故此選項錯誤;故選B.【題目點撥】本題考查了中心對稱圖形的概念,熟知中心對稱圖形的概念是解決問題的關(guān)鍵.5、C【解題分析】
通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應(yīng)用兩次勾股定理分別求BE和a.【題目詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當(dāng)點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【題目點撥】本題綜合考查了菱形性質(zhì)和一次函數(shù)圖象性質(zhì),解答過程中要注意函數(shù)圖象變化與動點位置之間的關(guān)系.6、B【解題分析】
根據(jù)菱形的性質(zhì)以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數(shù).【題目詳解】∵四邊形ABCD為菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故選B.【題目點撥】本題考查了菱形的性質(zhì)和全等三角形的判定和性質(zhì),注意掌握菱形對邊平行以及對角線相互垂直的性質(zhì).7、B【解題分析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【題目點撥】本題考查了相似三角形的性質(zhì)的應(yīng)用,利用勾股定理即可得解,解題的關(guān)鍵是證明△AEG∽△BFE.8、B【解題分析】
根據(jù)一元二次方程的解的定義把x=0代入方程得到關(guān)于a的一元二次方程,然后解此方程即可【題目詳解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以
,所以,故故答案為B【題目點撥】本題考查了一元二次方程的解的定義:使一元二次方程左右兩邊成立的未知數(shù)的值叫一元二次方程的解.9、A【解題分析】試題分析:因為A點坐標為(-4,2),所以,原點在點A的右邊,也在點A的下邊2個單位處,從點B來看,B(2,-4),所以,原點在點B的左邊,且在點B的上邊4個單位處.如下圖,O1符合.考點:平面直角坐標系.10、C【解題分析】
由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【題目點撥】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.11、A【解題分析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數(shù).故選A.12、B【解題分析】
畫樹狀圖列出所有等可能結(jié)果,從中確定出甲、乙兩位游客恰好從同一個入口進入公園的結(jié)果數(shù),再利用概率公式計算可得.【題目詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結(jié)果,其中甲、乙兩位游客恰好從同一個入口進入公園的結(jié)果有4種,所以甲、乙兩位游客恰好從同一個入口進入公園的概率為=,故選B.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】
由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【題目詳解】由圖象可知:拋物線開口方向向下,則,對稱軸直線位于y軸右側(cè),則a、b異號,即,拋物線與y軸交于正半軸,則,,故正確;對稱軸為,,故正確;由拋物線的對稱性知,拋物線與x軸的另一個交點坐標為,所以當(dāng)時,,即,故正確;拋物線與x軸有兩個不同的交點,則,所以,故錯誤;當(dāng)時,,故正確.故答案為.【題目點撥】本題考查了考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.14、【解題分析】
延長GF與CD交于點D,過點E作交DF于點M,設(shè)正方形的邊長為,則解直角三角形可得,根據(jù)正切的定義即可求得的正切值【題目詳解】延長GF與CD交于點D,過點E作交DF于點M,設(shè)正方形的邊長為,則,故答案為:【題目點撥】考查正多邊形的性質(zhì),銳角三角函數(shù),構(gòu)造直角三角形是解題的關(guān)鍵.15、1.4【解題分析】
由概率估計圖案在整副畫中所占比例,再求出圖案的面積.【題目詳解】估計宣傳畫上世界杯圖案的面積約為3×1×0.4=1.4m1.故答案為1.4【題目點撥】本題考核知識點:幾何概率.解題關(guān)鍵點:由幾何概率估計圖案在整副畫中所占比例.16、【解題分析】
直接利用反比例函數(shù)的增減性進而得出圖象的分布.【題目詳解】∵反比例函數(shù)y(k≠0),在其圖象所在的每個象限內(nèi),y的值隨x的值增大而減小,∴它的圖象所在的象限是第一、三象限.故答案為:一、三.【題目點撥】本題考查了反比例的性質(zhì),正確掌握反比例函數(shù)圖象的分布規(guī)律是解題的關(guān)鍵.17、.【解題分析】試題分析:根據(jù)翻轉(zhuǎn)變換的性質(zhì)得到∠AFE=∠D=90°,AF=AD=5,根據(jù)矩形的性質(zhì)得到∠EFC=∠BAF,根據(jù)余弦的概念計算即可.由翻轉(zhuǎn)變換的性質(zhì)可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案為:.考點:軸對稱的性質(zhì),矩形的性質(zhì),余弦的概念.18、m>1【解題分析】∵反比例函數(shù)的圖象在其每個象限內(nèi),y隨x的增大而減小,∴>0,解得:m>1,故答案為m>1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)A,B兩種型號電風(fēng)扇的銷售單價分別為250元/臺、210元/臺;(2)A種型號的電風(fēng)扇最多能采購10臺;(3)在(2)的條件下超市不能實現(xiàn)利潤為1400元的目標.【解題分析】
(1)設(shè)A、B兩種型號電風(fēng)扇的銷售單價分別為x元、y元,根據(jù)3臺A型號5臺B型號的電扇收入1800元,4臺A型號10臺B型號的電扇收入3100元,列方程組求解;(2)設(shè)采購A種型號電風(fēng)扇a臺,則采購B種型號電風(fēng)扇(30-a)臺,根據(jù)金額不多余5400元,列不等式求解;(3)設(shè)利潤為1400元,列方程求出a的值為20,不符合(2)的條件,可知不能實現(xiàn)目標.【題目詳解】(1)設(shè)A,B兩種型號電風(fēng)扇的銷售單價分別為x元/臺、y元/臺.依題意,得解得答:A,B兩種型號電風(fēng)扇的銷售單價分別為250元/臺、210元/臺.(2)設(shè)采購A種型號的電風(fēng)扇a臺,則采購B種型號的電風(fēng)扇(30-a)臺.依題意,得200a+170(30-a)≤5400,解得a≤10.答:A種型號的電風(fēng)扇最多能采購10臺.(3)依題意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的條件下超市不能實現(xiàn)利潤為1400元的目標.【題目點撥】本題考查了二元一次方程組和一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系和不等關(guān)系,列方程組和不等式求解.20、(1)一切實數(shù)(2)-,-(3)見解析(4)該函數(shù)有最小值沒有最大值;該函數(shù)圖象關(guān)于直線x=2對稱【解題分析】
(1)分式的分母不等于零;(2)把自變量的值代入即可求解;(3)根據(jù)題意描點、連線即可;(4)觀察圖象即可得出該函數(shù)的其他性質(zhì).【題目詳解】(1)由y=知,x2﹣4x+5≠0,所以變量x的取值范圍是一切實數(shù).故答案為:一切實數(shù);(2)m=,n=,故答案為:-,-;(3)建立適當(dāng)?shù)闹苯亲鴺讼担椟c畫出圖形,如下圖所示:(4)觀察所畫出的函數(shù)圖象,有如下性質(zhì):①該函數(shù)有最小值沒有最大值;②該函數(shù)圖象關(guān)于直線x=2對稱.故答案為:該函數(shù)有最小值沒有最大值;該函數(shù)圖象關(guān)于直線x=2對稱【題目點撥】本題綜合考查了二次函數(shù)的圖象和性質(zhì),根據(jù)圖表畫出函數(shù)的圖象是解題的關(guān)鍵.21、+4.【解題分析】
原式利用負整數(shù)指數(shù)冪法則,二次根式性質(zhì),以及特殊角的三角函數(shù)值計算即可求出值.【題目詳解】原式=++2+2×=+4.【題目點撥】本題考查了實數(shù)的運算,涉及了負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、二次根式的化簡等,熟練掌握各運算的運算法則是解本題的關(guān)鍵.22、38+12【解題分析】
根據(jù)∠ABC=90°,AE=CE,EB=12,求出AC,根據(jù)Rt△ABC中,∠CAB=30°,BC=12,求出根據(jù)DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出AD,從而得出DC的長,最后根據(jù)四邊形ABCD的周長=AB+BC+CD+DA即可得出答案.【題目詳解】∵∠ABC=90°,AE=CE,EB=12,∴EB=AE=CE=12,∴AC=AE+CE=24,∵在Rt△ABC中,∠CAB=30°,∴BC=12,∵DE⊥AC,AE=CE,∴AD=DC,在Rt△ADE中,由勾股定理得∴DC=13,∴四邊形ABCD的周長=AB+BC+CD+DA=【題目點撥】此題考查了解直角三角形,用到的知識點是解直角三角形、直角三角形斜邊上的中線、勾股定理等,關(guān)鍵是根據(jù)有關(guān)定理和解直角三角形求出四邊形每條邊的長.23、a2+2a,2【解題分析】
根據(jù)分式的減法和除法可以化簡題目中的式子,然后根據(jù)a2+2a?2=2,即可解答本題.【題目詳解】解:===a(a+2)=a2+2a,∵a2+2a﹣2=2,∴a2+2a=2,∴原式=2.【題目點撥】本題考查分式的化簡求值,解答本題的關(guān)鍵是明確分式化簡求值的方法.24、方程無解【解題分析】
找出分式方程的最簡公分母,去分母后轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,再代入最簡公分母進行檢驗即可.【題目詳解】解:方程的兩邊同乘(x+1)(x?1),得:x+12x2x2∴此方程無解【題目點撥】本題主要考查了解分式方程,解分式方程的步驟:①去分母;②解整式方程;③驗根.25、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解題分析】
(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當(dāng)直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時,AD的值最短,此時EF的值也最短;(3)如圖3中,將△ADC繞點A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設(shè)BE=CD=x.證明EC=AC,構(gòu)建二次函數(shù)求出EC的最小值即可解決問題.【題目詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當(dāng)直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時,AD的值最短,此時EF的值也最短,如圖2﹣1中,當(dāng)AD⊥BC時,作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)(體育教育)體育教學(xué)技能階段測試題及解析
- 2026年監(jiān)控工程(監(jiān)控安裝)考題及答案
- 2025年大學(xué)三年級(口腔醫(yī)學(xué))口腔頜面外科學(xué)試題及答案
- 2025年高職體育保健與康復(fù)(運動康復(fù)訓(xùn)練)試題及答案
- 2025年高職中草藥栽培與加工技術(shù)(中藥炮制基礎(chǔ))試題及答案
- 2025年高職糧油儲藏與檢測技術(shù)(糧油儲藏檢測)試題及答案
- 2025年個體診所醫(yī)療器械自查報告范文
- 深度解析(2026)GBT 18310.4-2001纖維光學(xué)互連器件和無源器件 基本試驗和測量程序 第2-4部分試驗 光纖光纜保持力
- 深度解析(2026)《GBT 18223-2000木工機床 升降臺 術(shù)語》(2026年)深度解析
- 深度解析(2026)《GBT 18104-2000魔芋精粉》
- 2025年山東公務(wù)員考試申論c真題及答案
- 成骨不全癥護理
- “成于大氣 信達天下”-成信校史課程知到課后答案智慧樹章節(jié)測試答案2025年春成都信息工程大學(xué)
- 大學(xué)生個人職業(yè)生涯規(guī)劃課件模板
- 中國心力衰竭診斷和治療指南2024解讀(完整版)
- 竹塑復(fù)合材料產(chǎn)業(yè)基地項目可行性研究報告
- 2024年秋季新人教版八年級上冊物理全冊教案(2024年新教材)
- 膽總管結(jié)石伴膽管炎的護理查房
- 中國類風(fēng)濕關(guān)節(jié)炎診療指南
- 妊娠合并肥胖癥護理查房課件
- M蛋白血癥護理查房
評論
0/150
提交評論