云南省昭通市五校2024屆高三下-期末考試(元月調(diào)研)數(shù)學試題試卷_第1頁
云南省昭通市五校2024屆高三下-期末考試(元月調(diào)研)數(shù)學試題試卷_第2頁
云南省昭通市五校2024屆高三下-期末考試(元月調(diào)研)數(shù)學試題試卷_第3頁
云南省昭通市五校2024屆高三下-期末考試(元月調(diào)研)數(shù)學試題試卷_第4頁
云南省昭通市五校2024屆高三下-期末考試(元月調(diào)研)數(shù)學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

云南省昭通市五校2024屆高三下-期末考試(元月調(diào)研)數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.2.已知數(shù)列的通項公式是,則()A.0 B.55 C.66 D.783.偶函數(shù)關于點對稱,當時,,求()A. B. C. D.4.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}5.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.6.設集合,,則()A. B.C. D.7.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.8.已知雙曲線(,)的左、右焦點分別為,以(為坐標原點)為直徑的圓交雙曲線于兩點,若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.9.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.10.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.211.函數(shù)的部分圖象大致是()A. B.C. D.12.函數(shù)在上的圖象大致為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某部隊在訓練之余,由同一場地訓練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為______.14.(5分)已知曲線的方程為,其圖象經(jīng)過點,則曲線在點處的切線方程是____________.15.展開式中的系數(shù)的和大于8而小于32,則______.16.若函數(shù)為奇函數(shù),則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)有三個零點,求實數(shù)的取值范圍.18.(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學期望.19.(12分)某網(wǎng)絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學期望.20.(12分)已知函數(shù),.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設方程的實根為.令若存在,,,使得,證明:.21.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)x與燒開一壺水所用時間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間y關于開關旋鈕旋轉的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結果和表中數(shù)據(jù),建立y關于x的回歸方程;(3)若旋轉的弧度數(shù)x與單位時間內(nèi)煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.22.(10分)已知.(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】分析:作出函數(shù)的圖象,利用消元法轉化為關于的函數(shù),構造函數(shù)求得函數(shù)的導數(shù),利用導數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當時,得,即,則滿足,則,即,則,設,則,當,解得,當,解得,當時,函數(shù)取得最小值,當時,;當時,,所以,即的取值范圍是,故選A.點睛:本題主要考查了分段函數(shù)的應用,構造新函數(shù),求解新函數(shù)的導數(shù),利用導數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關鍵,著重考查了轉化與化歸的數(shù)學思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.2、D【解題分析】

先分為奇數(shù)和偶數(shù)兩種情況計算出的值,可進一步得到數(shù)列的通項公式,然后代入轉化計算,再根據(jù)等差數(shù)列求和公式計算出結果.【題目詳解】解:由題意得,當為奇數(shù)時,,當為偶數(shù)時,所以當為奇數(shù)時,;當為偶數(shù)時,,所以故選:D【題目點撥】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應用,等差數(shù)列的求和公式,屬于中檔題.3、D【解題分析】

推導出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【題目詳解】由于偶函數(shù)的圖象關于點對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當時,,則.故選:D.【題目點撥】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導出函數(shù)的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.4、B【解題分析】

按補集、交集定義,即可求解.【題目詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【題目點撥】本題考查集合間的運算,屬于基礎題.5、D【解題分析】

連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【題目詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【題目點撥】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計算能力.6、A【解題分析】

解出集合,利用交集的定義可求得集合.【題目詳解】因為,又,所以.故選:A.【題目點撥】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.7、B【解題分析】

設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結果.【題目詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【題目點撥】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.8、D【解題分析】

連接,可得,在中,由余弦定理得,結合雙曲線的定義,即得解.【題目詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【題目點撥】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.9、C【解題分析】

根據(jù)循環(huán)結構的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內(nèi)容.【題目詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結合選項可知C為正確選項,故選:C.【題目點撥】本題考查了循環(huán)結構程序框圖的簡單應用,完善程序框圖,屬于基礎題.10、D【解題分析】

如圖所示建立直角坐標系,設,則,計算得到答案.【題目詳解】如圖所示建立直角坐標系,則,,,設,則.當,即時等號成立.故選:.【題目點撥】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關鍵.11、C【解題分析】

判斷函數(shù)的性質(zhì),和特殊值的正負,以及值域,逐一排除選項.【題目詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【題目點撥】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負,以及單調(diào)性,極值點等排除選項.12、C【解題分析】

根據(jù)函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【題目詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【題目點撥】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【題目詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【題目點撥】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉化能力,屬于中檔題.14、【解題分析】

依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.15、4【解題分析】

由題意可得項的系數(shù)與二項式系數(shù)是相等的,利用題意,得出不等式組,求得結果.【題目詳解】觀察式子可知,,故答案為:4.【題目點撥】該題考查的是有關二項式定理的問題,涉及到的知識點有展開式中項的系數(shù)和,屬于基礎題目.16、-2【解題分析】

由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【題目詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【題目點撥】本題考查奇函數(shù)性質(zhì)的應用,考查學生的計算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】

(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數(shù)作出的圖象即可.【題目詳解】(1)令,則,當時,,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,當時,,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實數(shù)的取值范圍為.【題目點撥】本題考查利用導數(shù)證明不等式以及研究函數(shù)零點個數(shù)問題,考查學生數(shù)形結合的思想,是一道中檔題.18、(1)64,65;(2);(3).【解題分析】

(1)根據(jù)頻率分布直方圖及其性質(zhì)可求出,平均數(shù),中位數(shù);(2)設“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,由條件概率公式可求出;(3)從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談,其中“不合格”的學生數(shù)為,“合格”的學生數(shù)為6;由題意可得,5,10,15,1,利用“超幾何分布”的計算公式即可得出概率,進而得出分布列與數(shù)學期望.【題目詳解】由題意知,樣本容量為,.(1)平均數(shù)為,設中位數(shù)為,因為,所以,則,解得.(2)由題意可知,分數(shù)在內(nèi)的學生有24人,分數(shù)在內(nèi)的學生有12人.設“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,則,所以.(3)在評定等級為“合格”和“不合格”的學生中用分層抽樣的方法抽取10人,則“不合格”的學生人數(shù)為,“合格”的學生人數(shù)為.由題意可得的所有可能取值為0,5,10,15,1.,.所以的分布列為0510151.【題目點撥】本題主要考查了頻率分布直方圖的性質(zhì)、分層抽樣、超幾何分布列及其數(shù)學期望,考查了計算能力,屬于中檔題.19、(1)元;(2)32家;(3)分布列見解析;【解題分析】

(1)根據(jù)頻率分布直方圖求出各組頻率,再由平均數(shù)公式,即可求解;(2)求出的頻率即可;(3)中的個數(shù)的所有可能取值為,,,求出可能值的概率,得到分布列,由期望公式即可求解.【題目詳解】(1)頻率分布直方圖銷售額的平均值為千元,所以銷售額的平均值為元;(2)不低于元的有家(3)銷售額在的店鋪有家,銷售額在的店鋪有家.選取兩家,設銷售額在的有家.則的所有可能取值為,,.,,所以的分布列為數(shù)學期望【題目點撥】本題考查應用頻率分布直方圖求平均數(shù)和頻數(shù),考查離散型隨機變量的分布列和期望,屬于基礎題.20、(1)(2)證明見解析(3)證明見解析【解題分析】

(1)由題意可得,,令,利用導數(shù)得在上單調(diào)遞減,進而可得結論;(2)不等式轉化為,令,,利用導數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進而可將不等式轉化為,再利用單調(diào)性可得,記,,再利用導數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結論.【題目詳解】(1),即,化簡可得.令,,因為,所以,.所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設,則.在上,,所以在上單調(diào)遞減.在上,,所以在上單調(diào)遞增,所以.設,因為在上是減函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實根為,即,要證,由可知,即要證.當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論